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Abstract

The target space of @, 0) supersymmetric two-dimensional sigma model with Wess—Zumino
term has a connection with totally skew-symmetric torsion and holonomy containedin SR(1),
QKT connection. We study the geometry of QKT connections. We find conditions to the existence
of a QKT connection and prove that if it exists it is unique. We show that QKT geometry persist
in a conformal class of metrics which allows us to obtain a lot of (compact) examples of QKT
manifolds. We present a (local) description of four-dimensional homogeneous QKT structures
relying on the known result of naturally reductive homogeneous Riemannian manifolds. We consider
Einstein-like QKT manifold and find closed relations with Einstein—Weyl geometry in dimension
4. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53C25; 53C15; 53C56; 32L.25; 57525
Subj. Class.: Differential geometry

Keywords: Almost quaternionic; Hyper Hermitian; Quaternionic Kahler; Torsion; Locally conformal
guaternionic Kahler; Naturally reductive homogeneous Riemannian spaces; Einstein—Weyl geometry

1. Introduction and statement of theresults

An almost hypercomplex structure on a-dimensional manifoldVf is a triple H =
(Jo), @ =1, 2, 3, of almost complex structures : TM — TM satisfying the quaternionic
identitiest = —id andJ1J2 = —J2J1 = J3. When eachy,, is a complex structure is
said to be a hypercomplex structure &n
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An almost quaternionic structure a¥f is a rank-3 subbundl® c End(TM) which
is locally spanned by almost hypercomplex structtire= (J,); such a locally defined
triple H will be called an admissible basis ¢f. A linear connectiorv on TM is called
guaternionic connection ¥ preserves), i.e. Vxo € I'(Q) for all vector fieldsX and
smooth sections € I'(Q). An almost quaternionic structure is said to be a quaternionic
if there is a torsion-free quaternionic connectionQAHermitian metric is a Riemannian
metric which is Hermitian with respect to each almost complex structué iin almost
guaternionic (resp. quaternionic) manifold wigh-Hermitian metric is called an almost
quaternionic Hermitian (resp. quaternionic Hermitian) manifold.

Forn = 1, an almost quaternionic structure is the same as an oriented conformal structure
and it turns out to be always quaternionic. When> 2, the existence of torsion-free
guaternionic connection is a strong condition which is equivalent to the 1-integrability
of the associated Gk( H)SP(1) structure [10,33,43]. If the Levi-Civita connection of a
quaternionic Hermitian manifoldM, g, Q) is a quaternionic connection theén, g, Q)
is called quaternionic Kahler (briefly QK). This condition is equivalent to the statement
that the holonomy group of is contained in S&) - SA1) [1,2,25,40,41]. If on a QK
manifold there exist an admissible bagid) such that each almost complex structure
(Jo) € (H),a = 1,2, 3 is parallel with respect to the Levi-Civita connection then the
manifold is called hyper Kéhler (briefly HK). In this case, the holonomy groug of
contained in SH).

The notions of quaternionic manifolds arise in a natural way from the theory of supersym-
metric sigma models. The geometry of the target space of two-dimensional sigma models
with extended supersymmetry is described by the properties of a metric connection with
torsion [14,22]. The geometry a#}, 0) supersymmetric two-dimensional sigma models
without Wess—Zumino term (torsion) is a hyper Kahler manifold. In the presence of torsion
the geometry of the target space becomes hyper Kahler with torsion (briefly HKT) [23].
This means that the complex structurgsa = 1, 2, 3, are parallel with respect to a metric
quaternionic connection with totally skew-symmetric torsion [23]. L@daD) supersym-
metry requires that the target space of two-dimensional sigma models with Wess—Zumino
term be either HKT or quaternionic Kahler with torsion (briefly QKT) [32] which means
that the quaternionic subbundle is parallel with respect to a metric linear connection with
totally skew-symmetric torsion and the torsion 3-form is of type?) + (2, 1) with respect
to all almost complex structures 1. The target space of two-dimensior{dl 0) super-
symmetric sigma models with torsion coupled(th 0) supergravity is a QKT manifold
[24]. If the torsion of a QKT manifold is a closed 3-form then it is called strong QKT
manifold. The properties of HKT and QKT geometries strongly resemble those of HK
and QK ones, respectively. In particular, HKT [23] and QKT [24] manifolds admit twistor
constructions with twistor spaces which have similar properties to those of HK [21] and
QK [40-42].

The main object of interest in this paper is the differential geometric properties of QKT
manifolds. We find necessary and sufficient conditions to the existence of a QKT connection
interms of the Kéhler 2-forms and show that the QKT connection is unique if dimension is at
least 8 (see Theorem 2.2). We prove that the QKT manifolds are invariant under conformal
transformations of the metric. This allows us to present a lot of (compact) examples of QKT
manifolds. In particular, we show that the compact quaternionic Hopf manifolds studied in
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[35], which do not admit a QK structure, are QKT manifolds. In the compact case, we show
the existence of Gauduchon metric, i.e. the unique conformally equivalent QKT structure
with co-closed torsion 1-form.

Itis shown in [24] that the twistor space of a QKT manifold is always complex manifold
provided the dimension is at least 8. It admits complex contact (resp. Kahler) structure if
the torsion 4-form is of typ€2, 2) and some additional non-degenerativity (positivity) con-
ditions are fulfilled [24]. Most of the known examples of QKT manifolds are homogeneous
constructed in [34]. However, there are no homogeneous proper QKT manifolds (i.e. QKT
which is not QK or HKT) with torsion 4-form of typ€2, 2) in dimensions greater than 4
by the result of Opfermann and Papadopoulos [34]. We generalise this result showing that
there are no proper QKT manifolds with torsion 4-form of tyj2e2) provided that the
torsion is parallel and dimension is at least 8.

In dimension 4, a lot of examples of QKT manifolds are known [24,34]. In particular,
examples of homogeneous QKT manifolds are constructed in [34]. We notice that there are
many (even strong) QKT structures in dimension 4, all depending on an arbitrary 1-form. We
give a local description of four-dimensional QKT manifolds with parallel torsion; namely
such a QKT manifold is a Riemannian product of a real line and a three-dimensional
Riemannian manifold. We observe thathomogeneous QKT manifolds are precisely naturally
reductive homogeneous Riemannian manifolds, the objects which are well known. We
present a complete local description (up to an isometry) of four-dimensional homogeneous
QKT which was known in the setting of naturally reductive homogeneous 4-manifold [27].
In the last section, we consider four-dimensional Einstein-like QKT manifold and find a
closed relation with Einstein—Weyl geometry in dimension 4. In particular, we show that
every four-dimensional HKT manifold is of this type.

2. Characterisations of QKT connection

Let (M, g, (Jy) € O,a = 1,2, 3) be a 4-dimensional almost quaternionic manifold
with O-Hermitian Riemannian metrig and an admissible basig,). The Kahler form
F, of eachJ, is defined byF,, = g(-, J,). The corresponding Lie forms are given by
Oy =68Fy 0 Jy.

For anr-form ¢, we denote byJ,y the r-form defined byJ,v (X1, ..., X;) =
D)"Y (Ju X1, ..., JoXp),a =1 2, 3. Then(d“v¥), = (—1)" J, dJ, . We shall use the
notations @ Fg := (d°Fg)g, i.6. h Fg(X, Y, Z) = —dFs(Jo X, Ju ¥, Jy Z),a, B = 1,2, 3.

We recall the decomposition of a skew-symmetric tenBoe A2T*M @ TM with
respect to a given almost complex structige The (1, 1)-, (2, 0)- and(0, 2)-part of P are
defined byPL1(J, X, J,¥) = PLY(X,Y), P20(J, X, Y) = J, P?0(X,Y), PO2(J,X,Y)
= —J,P%2(X,Y), respectively.

Foreachy = 1, 2, 3, we denote by f; (resp. d,), the(1, 2)+(2, 1)-part (resp(3, 0)+
(0, 3)-part) of dF, with respect to the almost complex structufg. We consider the
following 1-form:

4n
1
bup=—5) AFS (X ei, Jgen), @ f=123
i=1
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Here and furtheey, ez, . .., 4n is an orthonormal basis of the tangential space.

Note thatdy o = 6.

The Nijenhuis tensolV, of an almost complex structur, is given byN,(X,Y) =
[JuX, Jo Y] = [X, Y] = Ju[Ju X, Y] — Ju[X, JoY].

The celebrated Newlander—Nirenberg theorem [31] states that an almost complex
structure is a complex structure if and only if its Nijenhuis tensor vanishes.

Let V be a quaternionic connection, i.e.

Vig=—-wg®J, +w, ® Jg, (2.1)

where thew,, « = 1, 2, 3 are 1-forms.

Here and henceforttw, 8, y) is a cyclic permutation ofl, 2, 3).

LetT(X,Y) = VxY —VyX —[X, Y]be the torsion tensor of typd, 2) of V. We denote
by the same letter the torsion tensor of type3) given by7 (X, Y, Z) = g(T (X, Y), Z).
The Nijenhuis tensor is expressed in term&/adis follows:

No(X,Y)=4T2%(X, Y) + (Vy,x Ja)(¥) — (Vv Ju) (X)
— (Vo) o X) 4+ (Vx Ja) (Jo Y), (2.2)

where the(0, 2)-partT0?’2 of the torsion with respect td, is given by
TO2(X,Y) = 3(T(X,Y) = T(Jo X, Jo¥) + JuT(Jo X, ¥) + Jo T (X, Jo¥)). (2.3)

We recall that if a 3-form/ is of type (1, 2) + (2, 1) with respect to an almost complex
structure/ then it satisfies the equality

VX, Y, Z) = v@X, Y, Z) + ¥ (IX, Y, I2) + ¥ (X, Y, I2). (2.4)

Definition. An almost quaternionic Hermitian manifol@M, g, (H,) € Q) is QKT

manifold if it admits a metric quaternionic connection with totally skew-symmetric
torsion which is(1, 2) + (2, 1)-form with respect to eacli,, « = 1, 2, 3. If the torsion
3-form is closed then the manifold is said todbeong QKT manifold.

It follows that the holonomy group df is a subgroup of S®) - SR(1).
By means of (2.1), (2.2) and (2.4), the Nijenhuis tensgrof J,, « = 1, 2, 3, on a QKT
manifold is given by

No(X,Y) =Ag(V)JpX — A (X)JgY — J4Ag (V) X + Jo Ag(X) J, Y, (2.5)
where
Ay = wg + Jywy. (2.6)

Remark 2.1. The definition of QKT manifolds given above is equivalent to that given in
[24] because the requirement the torsion to(be?) + (2, 1)-form with respect to each

Ju,a =1, 2, 3, is equivalent, by means of (2.5), to the fourth condition of (4) in [24]. The
torsion of V is (1, 2) + (2, 1)-form with respect to any (local) almost complex structure
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J € Q[24]. This follows also from (2.5) and the general formula (6) in [4] which expresses
Nyinterms ofNy,, Ny, Ny,. Infact, itis sufficient that the torsion is(&, 2) + (2, 1)-form

with respect to the only two almost complex structureg @ since the formula (3.4.4)

in [3] gives the necessary expression\of, by N, andN,,. Indeed, it is easy to see that
the formula (3.4.4) in [3] holds for thed, 2)-part7.9-2, « = 1, 2, 3, of the torsion. Hence,
the vanishing of thg0, 2)-part of the torsion with respect to any two almost complex
structures in(H) implies the vanishing of th€0, 2)-part of T with respect to the third
one.

On a QKT manifold there are three naturally associated 1-forms to the torsion defined by

4n
1
fo(X) = —EZT(X, ei, Juei), a=1,23. (2.7)
i=1

We have the following proposition.
Proposition 2.1. On a QKT manifold, J1t1 = Joro = Jats.

Proof. Applying (2.4) with respect tdg, we obtain

1 4n 1AM
o (X) = _EZT(X’ ei. Juei) = _EZT(X’ Tgei, Jyer)
i=1 i=1
1 an 1 4n 1 4n
= EZT(JﬂX, ei, Jyer) — 5ZT(J,gx, Jgei, Juer) + EZT(X, ei, Juei).
i=1 i=1 i=1
The last equality implieg, = Jgt,, which proves the assertion. O

The 1-formt = Jyt, is independent of the chosen almost complex struciuréy
Proposition 2.1. We shall call ihe torsion 1-form of a given QKT manifold.

Remark 2.2. Every QKT manifold is a quaternionic manifold. This is an immediate
consequence of (2.5) and Proposition 2.3 in [4].

However, the converse to the above property is not always true. In fact, we have the
following theorem.

Theorem 2.2. Let (M, g, (Jy) € Q) bea4n-dimensional (n > 1) quaternionic manifold
with Q-Hermitian metric g. Then M admits a QKT structure if and only if the following
conditions hold:

(o Fo)T — (g Fp)T = 2(Ko A Fg — JgKp A Fou — (Kg — JuKo) A Fy), (2.8)

where (d, F,) " denotesthe (1, 2) + (2, 1)-part of (dy F,,) withrespecttothe J,, o = 1, 2, 3.
The 1-forms K, o = 1, 2, 3, are given by

1
Ko = 7= (g + bary)- (2.9)
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The metric quaternionic connection V with torsion 3-form of type (1, 2) + (2, 1) isunique
and is determined by

V =V + 3((doF)" = 3(JuKa A Fy + Ko A Fp)), (2.10)
where V¢ isthe Levi-Civita connection of g.
Proof. To prove the ‘if’ part, letV be a metric quaternionic connection satisfying (2.1)

which torsionT has the required properties. We follow the scheme in [17]. Sihde
skew-symmetric, we have

V =VE&4 3T (2.11)
We obtain using (2.1) and (2.11) that
2T (X, oY, 2) + T(X,Y, JuZ))

= —g(V3J)Y, Z) + wp(X)Fy (Y, Z) — 0, (X)Fs(Y, Z). (2.12)

The tenso¢ J, is decomposed by parts accordingtd, = (VJ,)%%+ (VJ,)%2, where
[17]

g(V5I)?0Y, Z2) = 3(AF) (X, oY, Ju Z) — (dF) T (X, Y, Z)), (2.13)

g(V§J)®?Y, Z) = 5(e(Na(X, ), Ja Z) — g(Na(X, 2), JuY)
—8(Nu(Y, Z), Ju X)). (2.14)
Taking the(2, 0)-part in (2.12), we obtain using (2.13) that
T(X,J,Y,Z)+T(X,Y, J,Y)=dF,)" (X, J,Y, J,Z) — (dF)T (X, Y, Z)
+Co(X)F, (Y, Z) + Ca(Ju X) Fp(Y, Z),  (2.15)
where
Co = wpg — Jywy. (2.16)

The cyclic sum of (2.15) and the fact thAtand (dF,)* are (1, 2) + (2, 1)-forms with
respect to eachi,, gives

T = (uFa)" — 3(JaCu A Fy + Co A Fp). (2.17)

Further, we take the contractions in (2.17) to get

Joaty = =04 — JgClq, Jate = —=J,08.4 — NI, Cg,
Jata = Jgbyo — NI Cy. (2.18)
Using Proposition 2.1, (2.6) and (2.16), we obtain consequently from (2.18) that
Ag = JuCp + J,Cyy = Jg(0, — 6p), (2.19)
(n —1JpCo = Oy — Jgb4. . (2.20)

Then (2.8) and (2.9) follow from (2.17) and (2.20).
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For the converse, we definéby (2.10). To complete the proof, we have to show ¥iat
is a quaternionic connection. We calculate

g(VxJ)Y, Z2)=g(V§ )Y, Z) + %(T(X, JoY,2)+T(X,Y, JuZ))
=wp(X)F, (Y, Z) — w, (X)F(Y, Z),

where we used (2.6), (2.9), (2.13), (2.14), (2.16) and (2.19) and the compatibility condition
(2.8) to get the last equality. The uniquenessvofollows from (2.10) as well as from
Theorem 10.3 in [33] which states that any quaternionic connection is entirely determined
by its torsion (see also [18]). |

In the case of HKT manifoldK, = dF, = 0 and Theorem 2.2 is a consequence of
the general results in [17] (see also [20]) which imply that on a Hermitian manifold there
exists a unique linear connection with totally skew-symmetric torsion preserving the metric
and the complex structure, the Bismut connection. This connection was used by Bismut
[9] to prove a local index theorem for the Dolbeault operator on non-Kahler manifold. The
geometry of this connection is referred to KT-geometry by physicists. Obstructions to the
existence of (non-trivial) Dolbeault cohomology groups on a compact KT-manifold are
presented in [5].

We note that (2.19) and (2.20) are also valid in the easel.

We get, as a consequence of the proof of Theorem 2.2, the following integrability criterion
which is discovered in dimension 4 by Battaglia and Salamon (see [19]).

Proposition 2.3. The Nijenhuis tensors of a QKT manifold depend only on the difference
between the Lie forms. In particular, the almost complex structures J, on a QKT manifold
(M, (Jy) € Q,g,V) areintegrableif and only if

Op =05 =0,.

Proof. The Nijenhuis tensors are given by (2.5) and (2.19). O

Coroallary 2.4. On a 4n-dimensional QKT manifold the following formulas hold:
Jg0u.y = —J,0u.p,
(% + 1)y — nbg — n20), + J,0p o +ndeby g — (n + 1)Jgby,, = O. (2.21)
Ifn = 1,then
Oy = Jgbu.y = —J0u.p.

Proof. The first formula follows directly from the system (2.18). Solving the system (2.18)
with respect taC,,, we obtain

(13— 1)JpCoy = (Bn — Jy0p.0) + 10 — Juby ) + 1?0y — Jgbay). (2.22)

Then (2.21) is a consequence of (2.20) and (2.22). The last assertion follows from
(2.20). O
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Corollary 2.5. Onad4n-dimensional (n» > 1) QKT manifold the SP(1)€eonnection 1-forms
are given by

1 1 1
—ZJs(0, —05+-—8 Oy 2.23
“P 2’3(? - “>+2(1—n) ay (2.23)

Proof. The proof follows in a straightforward way from (2.6), (2.16), (2.19)
and (2.20). O

Theorem 2.2 and the above formulas lead to the following criterion.

Proposition 2.6. Let (M, g, (H)) be a 4n-dimensional (n > 1) QKT manifold. The
following conditions are equivalent:

1. (M, g, (H)) isan HKT manifold;
2. o Ff =dgFf =d, F;
3. Oy = Jpby -

Proof. If (M, g, (H)) is an HKT manifold, the connection 1-formg, = 0, = 1, 2, 3.
Then (2) and (3) follow from (2.8), (2.9), (2.16) and (2.20).

If (3) holds, then (2.19) and (2.20) yield, = Ay, = 0, = 1,2, 3, sincen > 1.
Consequently,@, = JgCp — JgAg = 0 by (2.6) and (2.16). Thus the equivalence of (1)
and (3) is proved.

Let (2) holds, then we compute théat = J, 65 . Sincen > 1, the equality (2.22) leads
toCy = 0, = 1, 2, 3, which forcesw, = 0, = 1, 2, 3 as above. This completes the
proof. a

The next theorem shows that QKT manifolds are stable under a conformal transfor-
mations.

Theorem 2.7. Let (M, g, (Jy), V) be a 4n-dimensional QKT manifold. Then every
Riemannian metric g in the conformal class [g] admits a QKT connection. If g = fg
for a positive function f then the QKT connection V corresponding to g is given by

g(VxY, Z)=19(VxY, 2) + 3(df (X)g(Y. 2) + df (V)g(X, 2) —df(2)g(X.Y))
+ 3 df A Fy+ Jgdf A Fg+ J, df A F)(X, Y, 2). (2.24)

Thetorsion tensors T and T and the torsion 1-forms¢ and 7 of V and V are related by
T =fT+Jodf AFy+Jgdf A Fg+J,df AF,y, (2.25)
f=t—2n+1)dinf. (2.26)

Proof. First, we assume > 1. We shall apply Theorem 2.2 to the quaternionic Hermitian
manifold (M, g = fg, (Jy) € Q). We denote the objects corresponding to the metiiy
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a line above the symbol, e.g, denotes the K&hler form of, with respect tgz. An easy
calculation gives the following sequence of formulas:

Qe Fff = Jodf A Fy+ fOuFY, Gy =0, + (22— DdInf,
Ou,y = Ouy — JgdIn f. (2.27)

We substitute (2.27) into (2.9), (2.19) and (2.23) to get

Ky =Ky —2JgdIn f, A=A, 0y = wg — JgdIn f. (2.28)

Using (2.27) and (2.28), we verify that the conditions (2.8) with respect to the ngetric
are fulfilled. Theorem 2.2 implies that there exists a QKT connecWonith respect to
(g, 0). Using the well-known relation between the Levi-Civita connections of conformally
equivalent metrics, (2.27) and (2.28), we obtain (2.24) from (2.10).

If n = 1, we define the new QKT connection with respectgpQ) by (2.24).

Using (2.24), we get (2.25) and consequently (2.26). O

Theorem 2.7 allows us to find distinguished QKT structures on a compact QKT manifold.
To this end, we shall use the Gauduchon theorem for the existence of a Gauduchon metric on
a compact Hermitian or Weyl manifold [15,16]. This theorem can be formulated in our no-
tations as follows: to a given compact QKT maniféM, g, (J,), V, T) there always exists
a unigue (up to homothety) conformally related QKT manifaif, gc = fg, (J»), Vg, Tc)
such that the corresponding torsion 1-fagms co-closed with respect is. The key point
is that the torsion 1-form transforms under conformal rescaling according to (2.26) (see
[44, Appendix 1]). Application of this theorem leads to the following theorem.

Theorem 2.8. In the conformal class of a compact QKT manifold there exists a unique
(up to homothety) metric with co-closed torsion 1-form.

We shall call the metric with co-closed torsion 1-form on a compact QKT manifold the
Gauduchon metric.

Corollary 2.9. On a compact QKT manifold with closed (non-exact) torsion 1-form the
Gauduchon metric gg cannot have positive definite Riemannian Ricci tensor. In particular,
if it isa Einstein manifold then it is of non-positive scalar curvature.

Further, if the Gauduchon metric is Ricci flat then the corresponding torsion 1-form tg
is parallel with respect to the Levi-Civita connection of gg.

Proof. The two form d is invariant under conformal transformations by (2.26). Then
the Gauduchon metric has harmonic torsion 1-form, ire=détr = 0. The claim fol-
lows from the Weitzenbéeck formula (see, e.g. [B){Ids|? + [6¢[2dV = [, {IV¥t]? +
Rict (#, 1)} dV = 0, wherer” is the dual vector field of, | - | is the usual tensor norm and
dV the volume form. O

Theorem 2.7 allows us to supply a large class of (compact) QKT manifold. Namely, any
conformal metric of a QK, HK or HKT manifold will give a QKT manifold. This leads to the
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notion oflocally conformally QK (resp. locally conformally HK, resp. locally conformally
HKT) manifolds (briefly I.c.QK (resp. I.c.HK, resp. |.c.HKT) manifolds) in the context of
QKT geometry.

The 1.c.QK and l.c.HK manifolds have already appeared in the context of Hermitian—
Einstein—Weyl structures [37] and of 3-Sasakian structures [12]. These two classes of quater-
nionic manifolds are studied in detail (mostly in the compact case) in [35,36].

We recall that a quaternionic Hermitian manifod, g, Q) is said to be I.c.QK (resp. I.c.

HK, resp. I.c.HKT) manifold if each poing € M has a neighbourhoad,, such thatg|y,

is conformally equivalent to a QK (resp. HK, resp. HKT) metric. There are compact |.c.QK
manifold which do not admit any QK structure [35]. Typical examples of compact |.c.QK
manifolds without any QK structure are the quaternionic Hopf spates(H" — {0})/I",
whererl is an appropriate discrete group acting diagonally on the quaternionic coordinates
in H" (see [35]).

We recall that on a |.c.QK manifold the 4-for@ = Zglea A F, satisfies @2 =
wA$2,do = 0, wherew is locally defined byp = 2d In f. On al.c.QK manifold viewed as
a QKT manifold by Theorem 2.7 the torsion 1-form is equalte (2n + 1)w by (2.26). The
QK manifolds are Einstein provided the dimension is at least 8 [1,7]. Then, the Gauduchon
theorem [16] applied to |.c.QK manifold in [35] can be stated in our context as follows.

Corollary 2.10. Let (M, g) bea compact 4n-dimensional (n > 1) QKT manifold whichis
|.c.QK and assume that no metric in the conformal class [g] of g is QK. Then the torsion
1-form of the Gauduchon metric g is parallel with respect to the Levi-Civita connection

of gG.

Theorems 2.2 and 2.7 together with Propositions 2.3 and 2.6 imply the following.

Corollary 2.11. Everyl.c.QK manifold admits a QKT structure.
Further, if (M, g, (J,), V) isa4n-dimensional (n > 1) QKT manifold then:

1. (M, g, (Jy), V)isal.c.QK manifold if and only if

= 2n+1(ta/\Fa+tﬁ/\Flg+ty/\Fy), dr = 0; (2.29)

2. (M, g, (Jo), V) isal.c.HKT manifoldif and only if the 1-form6, — Jg8,,,, isclosed, i.e.
d(Oy — Jﬁea,y) =0
3. (M, g, (Jy),V)isal.c.HK manifold if an only if (2.29)holds and

2(1—n)

b = ooy = 571

3. Curvatureof a QKT space

LetR = [V, V] -V be the curvature tensor of typk, 3) of V. We denote the curvature
tensor of type0, HR(X, Y, Z, V) = g(R(X, Y)Z, V) by the same letter. There are three
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Ricci forms given by

4n
1
pPa(X,Y) = EE 1R(X, Y,ei, Jyei)), a=123
1=

Proposition 3.1. The curvature of a QKT manifold (M, g, (J,), V) satisfies the following
relations:

1
ROX.V) o = ~(py (X. Y)Jp = pp(X. Y) ), (3.30)

Pa = dwy + wg A wy. (3.31)

Proof. We follow the classical scheme (see, e.qg. [3,8,36]). Using (2.1), we obtain
R(X,Y)Jy = —(dwg + 0y, A w)(X, V)T, 4+ (dwy, + we A wp)(X,Y)Jp.

Taking the trace in the last equality, we get

4n 4n

1 1
PuX, V) =53 R(X, Y. ei, Juei) = 53 R(X. Y, Jyei, Jyei)
i=1 i=1
4n
1
=—§ZR(X, Y, ei, Juei) + 2n(dwy + wp A ©,)(X, Y)Jp. O

i=1

Using Proposition 3.1, we find a simple necessary and sufficient condition a QKT manifold
to be an HKT one, i.e. the holonomy groupfto be a subgroup of SR).

Proposition 3.2. A4n-dimensional (n > 1) QKT manifold isan HKT manifold if and only
if all the three Ricci formsvanish, i.e. p1 = p2 = p3 =0.

Proof. If a QKT manifold is an HKT manifold then the holonomy group¥Wis contained
in SPAn). This impliesp, = 0,0 = 1, 2, 3.

For the converse, let the three Ricci forms vanish. Eq. (3.31) mean that the curvature of
the SP(1) connection o@ vanish. Then there exists a basls, « = 1, 2, 3) of almost
complex structures o@ and each, is V-parallel, i.e. the corresponding connection 1-forms
wr, =0, =1, 2, 3. Then eacll, is a complex structure, by (2.5) and (2.6). This implies
that the QKT manifold is an HKT manifold. O

We denote by RicRic? the Ricci tensors of the QKT connection and of the Levi-Civita
connection, respectively. In fact R, Y) = Zf’ilR(ei, X, Y, e).
Our main technical result is the following proposition.

Proposition 3.3. Let (M, g, (J,), V) be a 4n-dimensional QKT manifold. The following
formulas hold:
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npa (X, Ju¥) + pp(X. JgY) + py (X, 1Y)

= —nRIiC(XY) + $n(dT)a (X, Jo¥) + 3n(VT)o (X, JoY), (3.32)
nn—1) _. n
= Dpa(X, Ja¥) = —— ) Ric(X, Y) + a0+ 2){(n + D7) (X, JoY)
—(dT)(X, JgY) — (dT), (X, J, Y)},
n
5072 {1+ DX, Ja¥) = (VD5(X. JpY)

where(dT)y (X, Y) = Z?ﬁldT(X, Y,ei, Jye;),(VT)u(X,Y) = Z?il(VXT)(Ya ei, Juei).
Proof. Since the torsion is a 3-form, we have

(VET)(Y, Z,U) = (VxT)(Y, Z,U) + 1

> Xffz {g(T(X,Y), T(Z,U))}, (3.34)

o .
where N denote the cyclic sum of, Y, Z.

The exterior derivative fl is given by
dr(X,Y,Z,U) = X(\y(Z{(VXT)(Y’ Z,U)+g(T(X,Y), T(Z,U))}

— (VuT)(X, Y, 2) + o A8 (T(X, V), T(Z, U))}. (3.35)

The first Bianchi identity foiv states

(o2

vz RX. Y. Z,U) =

sz (VXT)(Y, Z,U) +g(T(X, ¥), T(Z,U))}.  (3.36)
We denote byB the Bianchi projector, i.eB(X, Y, Z,U) = X(\I/Z R(X,Y,Z,U).
The curvaturer® of the Levi-Civita connection is connected Byin the following way:
R8(X,Y,Z,U)=R(X,Y,Z,U) — %(VxT)(Y, Z,U)+ %(VYT)(X» Z,U)
- %8(T(X, Y), T(Z,U)) — %g(T(Y, Z), T(X,U0))
—38(T(Z.X), T(Y,U)). (3.37)

DefineDby D(X,Y,Z,U)=R(X,Y,Z,U) — R(Z, U, X, Y), we obtain from (3.37)
D(X,Y,Z,U)=3(VxT)(Y, Z,U) — 3(VyT)(X, Z,U)
—3(VzD)U, X, Y) + 3(VyT)(Z. X, Y), (3.38)

sinceD$ of R¢ is zero.
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Using (3.30) and (3.36), we find the following relation between the Ricci tensor and the
Ricci forms:

X,Y)= 1§(R(Y i, X, Jyei) + R(ei, X, Y, J '))+1§:B(XY iy Jati)
Pa (A, = 24 - , €iy Ay Jo€ €i, A, I, Jpu€j 2 - » X, €, Jo€i
1= 1=

4n
1 _. 1 . 1
= S RIC(Y. JuX) + 5 RIC(X. J ¥) + EEB(X, Y, ei, Jue;)
=

1
+ o op Uy Y. X) = pp(Jy X, )0y (JpX, Y)=py (JgY, X} (3.39)

On the other hand, using (3.30), we calculate

4 4n
Y D(X. i, Juei, Y) =Y (R(X, er, Juei, ¥) + R(Y, e;, Juei X))
i=1 i=1

1
= —Ric(Y, J,X) — Ric(X, J,Y) + —{pp(X, J, 1)
n
Combining (3.39) and (3.40), we derive

npa (X, JoY) + pp(X, JgY) + py (X, J, Y)
= —n Ric(XY) + 3nBy (X, Jo¥) + 3nDa (X, Jo¥), (3.41)
where the tensor®, and D, are defined byB,(X,Y) = ZfilB(X, Y, e, Jye;) and
Dy, (X,Y) = ZfilD(X, ei, Juei, Y). Taking into account (3.38), we get the expression

4n 4n
1 1
Dy(X,Y) = > E (VxT)(Y, e, Juei) + > E (VyT)(X, ei, Joei), a=123.
i=1 i=1
(3.42)

To calculateB, + D, we use (3.35) twice and (3.42). After some calculations, we derive

4n 4n
Bu(X,Y) 4+ Dy(X,Y) = E;dmf, Y, e, Juei) + ;(VXT)(Y, eir Juei),
a=123. (3.43)

We substitute (3.43) into (3.41). Solving the obtained system, we obtain

(n — Dipa(X, JoY) — pp(X, JgY)} = %n{(dT)a(X, JoY) — (dT)p(X, JgY)}
+ 3n{(VT) (X, JoY) — (VT)5(X, JgY)).
(3.44)

Finally, (3.41) and (3.44) imply (3.32). O



248 S Ivanov/ Journal of Geometry and Physics 41 (2002) 235-257

Remark 3.1. The Ricci tensor of a QKT connection is not symmetric in general. From
(3.34) and (3.36) and the fact tHais a 3-form we get the formula Ri&, Y) —Ric(Y, X) =
Zfil(vfi T)(e;, X,Y) = —86T (X, Y). Hence, the Ricci tensor of a metric linear connec-
tion with totally skew-symmetric torsion is symmetric if and only if the torsion 3-form is
co-closed.

Corollary 3.4. Let (M, g, V, T) be a Riemannian manifold with a metric connection V of
totally skew-symmetric torsion 7. The following conditions are equivalent:

1. V8T = 1dT;

2. VT isa4-form;

3. R(X,Y,Z,U)=R(Z,U, X,Y).

Proof. Egs. (3.35) and (3.36) yield

o
XYZ

=(VyT)(X,Y, Z2).

R(X,Y,Z,U)—dT(X,Y,Z,U) + X(;Z{g(T(X, Y). T(Z,U))}

The last equality together with (3.34) and (3.38) lead to the desired equivalencieB]

4. QKT manifoldswith parallel torsion and homogeneous QKT structures

Let (G/K, g) be a reductive (locally) homogeneous Riemannian manifold. The canon-
ical connectionV is characterised by the properti¥#g = VI = VR = 0 [26, p. 193].
A homogeneous quaternionic Hermitian manifold (resp. homogeneous hyper Hermitian)
manifold (G/K, g, Q) is a homogeneous Riemannian manifold with an invariant quater-
nionic Hermitian subbundl® (resp. three invariant anti-commuting complex structures).
This means that the bund{@ (resp. each of the three complex structures) is parallel with
respect to the canonical connecti®n The torsion ofV is totally skew-symmetric if and
only if the homogeneous Riemannian manifold is naturally reductive [26] (see also [34,45]).
Homogeneous QKT (resp. HKT) manifolds are homogeneous quaternionic Hermitian (resp.
homogeneous hyper Hermitian) manifold which are naturally reductive. Examples of homo-
geneous HKT and QKT manifolds are presented in [34]. The homogeneous QKT manifolds
in [34] are constructed from homogeneous HKT manifolds.

In this section, we generalise the result of Opfermann and Papadopoulos [34] which
states that there are no homogeneous QKT manifold with torsion 4-f@rof type (2, 2)
in dimensions greater than 4. First, we prove the following technical result.

Proposition 4.1. Let (M, g, (Jy), V) be a 4n-dimensional (n > 1) QKT manifold with
4-form dT of type (2, 2) with respect to each J,, « = 1, 2, 3. Suppose that the torsion is
parallel with respect to the QKT connection. Then the Ricci forms p,, are given by

pu(X, JuZ) = 2g(X,Y), a=123 (4.45)

where X is a smooth function on M.
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Proof. Let the torsion be parallel, i.8/T = 0. Remark 3.1 shows that the Ricci tensor is
symmetric. The equalities (3.35) and (3.36) imply

B(X,Y,Z,U) = (T(X,Y), T(Z, Uy} = 3dT(X,Y,Z,U). (4.46)

-
Xyz '
We getD = 0 from Corollary 3.4.

Suppose now that the 4-fornTds of type (2, 2) with respect to eachi,, « = 1, 2, 3.
Then it satisfies the equalities

dT(X,Y, Z,U) =dT (Ju X, Jo,Y, Z, U) +dT (Ju X, Y, Ju Z, U)
+dT (X, JoY, JuZ, U). (4.47)

The similar arguments as we used in the proof of Proposition 2.1 but applying (4.47) instead
of (2.4), yield the following lemma.

Lemma 4.2. On a QKT manifold with 4-form dT of type (2, 2) with respect to each
Jo,a =1, 2, 3, the following equalities hold:

(d7)1(X, 1Y) = (dT)2(X, J2Y) = (dT)3(X, J3Y), (4.48)

AT)o (X, J,Y) = —(AT)e(Jo X, Y), a=1,23. (4.49)

We substitute (4.46) and (4.48) aid= 0 into (3.34) and (3.44) to get

p1(X, 1Y) = p2(X, J2Y) = p3(X, J3Y), (4.50)
n n
w(X, JuY) = ———Ric(X, ¥) + ———(dT)o(X, JuY), o =12 3.
Pa(X, JuY) . ic( )+4(n+2)(d)(J) o 3
(4.51)

The equality (4.49) shows that the 2-forrfi,dis a (1, 1)-form with respect to/,. Hence,

the dr,, is (1, 1)-form with respect to eacli,, « = 1, 2, 3, because of (4.48). Since the
Ricci tensor ‘Ric’ is symmetric, (4.51) shows that the Ricci tensor Ric is of hybrid type
with respect to eacli,, i.e. RidJ, X, J,Y) = Ric(X, Y), « = 1, 2, 3 and the Ricci forms
ous o = 1,2, 3 are(l, 1)-forms with respect to all,, « = 1, 2, 3. Taking into account
(3.30), we obtain

R(X, JuX,Z,JuZ) + R(X, Ju X, J§Z, J, Z) + R(Jg X, J, X, Z, Jy Z)
+R(JpX, J,X,JgZ,J,Z) = %(,oa(X, JoX) + pa(JpX, J, X)) g(Z, Z)
= 2 X, X082, 2), (4.52)
where the last equality of (4.52) is a consequence of the following identity:

pa(JﬁX, JyX) = _:Oﬂ(JﬂX, X) = po(X, Ju X).



250 S lvanov/ Journal of Geometry and Physics 41 (2002) 235-257

The left-hand side of (4.52) is symmetric with respect to the vectois becauseD = 0.
Hencepy (X, Ju X)g(Z,Z) = pu(Z, Ju Z)g(X, X),a = 1, 2, 3. The last equality together
with (4.50) implies (4.45). O

Theorem 4.3. Let (M, g, (J,)) bea4n-dimensional (» > 1) QKT manifold with 4-form
dT of type (2, 2) with respect to each J,, a = 1, 2, 3. Suppose that the torsion is parallel
with respect to the QKT connection. Then (M, g, (Jy)) is either an HKT manifold with
parallel torsion or a QK manifold.

Proof. We apply Proposition 4.1. If the function= 0 thenp, = 0, = 1, 2, 3, by (4.45)
and Proposition 3.2 implies that the QKT manifold is actually an HKT manifold.

Let A # 0. The condition (4.45) determines the torsion completely. We proceed
involving (3.31) into the computations as in [24]. We calculate using (2.1) and (4.45)
that

(Vzpa)(X,Y) = Mwpg(Z)F, (X, Y) —w, (Z)Fp(X,Y)} —dA(Z)Fy (X, Y). (4.53)
Applying the operator d to (3.30), we get taking into account (4.45) that
dow = A(Fg Awy, —wg AF). (4.54)

On the other hand, we have

dpy = X‘;Z{(vzpa)(x, Y)+MT(X,Y), JuZ)}, a=123 (4.55)
Comparing the left-hand sides of (4.54) and (4.55) and using (4.53), we derive

A x‘\’(z{(r(x, Y), JuZ)} =dA A Fy(X, Y, Z), =123

The last equality implieaT = J, dx A F,, @ = 1,2, 3. If 1 is a non-zero constant then
T = 0 and we recover the result of Howe et al. [24]Alis not a constant then there exists
apointp € M and a neighbourhood, of p such that|y, # 0. Then

T=JydinAAFy, a=123 (4.56)
We take the trace in (4.56) to obtain
4n—-1)J,dInA =0, o=123 (4.57)

Eq. (4.57) forces # = 0 sincen > 1 and, consequentl§;, = 0 by (4.56). Hence, the QKT
space is a QK manifold which completes the proof. |

On a locally homogeneous QKT manifold the torsion and curvature are parallel and
Theorem 4.3 leads to the following.

Theorem 4.4. A (locally) homogeneous 4n-dimensional (rn > 1) QKT manifold with tor-
sion 4-form dT of type (2, 2) is either (locally) homogeneous HKT space or a (locally)
symmetric QK space.
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Theorem 4.4 shows that there are no homogeneous (proper) QKT manifolds with torsion
4-form of type (2, 2) in dimensions greater than 4 which is proved in [34] by different
methods using the Lie algebra arguments.

5. Four-dimensional QKT manifolds

In dimension 4, the situation is completely different from that described in Theorems
2.2 and 4.3 in higher dimensions. For a given quaternionic structure on a four-dimensional
manifold(M, g(H)) (or equivalently, given an orientation and a conformal class of Rieman-
nian metrics [19]) there are many QKT structures [24]. More precisely, all QKT structures
associated witlig, (H)) depend on a 1-forny due to the general identity

*¥ = —JY AF, (5.58)

wherex is the Hodgex-operator,J is ag-orthogonal almost complex structure with Kéhler
form F (see [19]). Indeed, for any given 1-forgn, we may define a QKT connectiohas
follows:V = V8 + % x1. Conversely, any 3-forfi can be represented By= —x(xT) and
the connection given above is a quaternionic connection with tofsientyr. Hence, a QKT
structure on a four-dimensional oriented manifold is a pair) of a Riemannian metrig
and a 1-form. The choice of generates three almost complex structyigs, « = 1, 2, 3,
satisfying the quaternionic identities [19]. The torsion 3-fdfris given by

T=xxt=ty NFy=tg NFg=1, N F,. (5.59)

As a consequence of (5.58), we obtadil” = xd %t = —&z. The last identity means that
the torsion 3-fornT is closed if and only if the 1-formis co-closed. Thus, in dimension
4, there are many strong QKT structures.

In higher dimensions the conformal change of the metric induces a unique QKT structure
by Theorem 2.7. We may define a QKT connection corresponding to a conformally equiv-
alent metricg = fgin dimension 4 by (2.24) and call this conformal QKT transformation.

In the compact case, taking the Gauduchon metric of Theorem 2.7, we obtain the following
proposition.

Proposition 5.1. Let (M, g, (H), V) beacompact four-dimensional QKT manifold. Inthe
conformal class[g] there exists a unique (up to homotety) strong QKT structure conformally
equivalent to the given one.

Further, we consider QKT structures with parallel torsion. We have the following theorem.

Theorem 5.2. Afour-dimensional QKT manifold M with parallel torsion 3-formisastrong
QKT manifold, thetorsion 1-formis parallel with respect to the Levi-Civita connection and
M islocally isometric to the product N3 x R, where N3 is a three-dimensional Rieman-
nian manifold admitting a Riemannian connection V with totally skew-symmetric torsion,
parallel with respect to V.

Proof. The proof is based on the following lemma.
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Lemma 5.3. A four-dimensional QKT manifold has parallel torsion 3-formif and only if
it has parallel torsion 1-form with respect to the Levi-Civita connection.

Proof. We calculate using (2.1) and (5.59) that

(VzT)(X, Y, U) =t (U)(wp(Z)F, (Y, X) — @, (Z)Fp(Y, X))
—toa(X)(wp(2)Fy (Y, U) — w0y (2)Fg(Y, U))
+ 1o (V) (wp(Z)F, (X, U) — 0, (Z)Fg(X, U))
+ Fo (Y, U)(Vzig) X + Fo (X, Y)(Vz1)U — Fo (X, U)(Vz1y)Y.
(5.60)

Taking the trace in (5.60), we obtain

4

D (VD)X ei, Juer) = =2(Vzt) X — 2wp(Z)ty (X) — 0, (2)15(X)).  (5.61)
i=1

Using (2.1), we get
(Vzta)X = (Vz1)Jo X — (0p(2)ty (X) — 0y (Z)1p(X)). (5.62)

Egs. (5.61) and (5.62) yield
i(VzT)(JaX, e, Jpe;)) =2(VzH)X, o=123. (5.63)
i=1
ThenVr = 0, since the torsion is parallel. BM$: = V¢ by (2.11) and (5.59). Hence,
8+
Y éo?t?].e converse, we insert (5.62) into (5.60) to get

(VzT)(X, Y, U) = Fo (Y, U)(Vzt)Ja X + Fo (X, Y)(Vz1)Jo U
+Fa(U» X)(vzt)JaYs (564)

since the dimension is equal to 4.¥8: = 0 thenVr = 0 and (5.64) leads t&§ T = 0
which proves the lemma. O

Lemma 5.3 shows tha&, g) is locally isometric to the Riemannian prodd@tx N3 of
areal line and a three-dimensional manifold (see, e.g. [26]). Using (5.59), we see that
T(*, X+, Y+) = 0 for every vector fields*, Y+ orthonormal to the vector field” dual
to the torsion 1-form. Hence, the torsioff and therefore the connectiGhdescend tav3.

In particular,dt = 0 and therefore the QKT structure is strong. a

As a consequence of Theorem 5.2, we recover the following two results proved in [27] in
the setting of naturally reductive homogeneous 4-manifolds.

Theorem 5.4. A (locally) homogeneous four-dimensional QKT manifold islocally isomet-
ric to the Riemannian product R x N3 of areal lineand a naturally reductive homogeneous
3-manifold N2,
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Theorem 5.5. Let (M, g) be a four-dimensional compact homogeneous QKT manifold.
Then the universal covering space M of M isisometric to the Riemannian product R x N3
of areal line and the three-dimensional space N2 is one of the following:

1. R3, $3, 13,

2. Isometric to one of the following Lie groups with a suitable | eft invariant metric:
2.1. SU2);
2.2. SL2, R), the universal covering of SL(2, R);
2.3. the Heisenberg group.

Theorem 5.5 is based on the classification of three-dimensional simply connected
naturally reductive homogeneous spaces given in [45].

5.1. Einstein-like QKT 4-manifolds

It is well known [1,7] that a A-dimensional £ > 1) QK manifold is Einstein and the
Ricci forms satisfyp, (X, JoY) = pg(X, JgY) = p, (X, J, Y) = 1g(X,Y), wherear is a
constant. However, the assumptions that these properties hold on a QKT méamifolt)
force the torsion to be zero [24] and the QKT manifold is a QK manifold. Actually, we have
already generalised this result proving that i§ not a constant the torsion has to be zero
(see the proof of Theorem 4.3).

If the dimension is equal to 4, the situation is different. In this section, we show that there
exists a four-dimensional (proper) QKT manifold satisfying similar curvature properties as
those mentioned above.

We denote byK the following (0, 2) tensor:

K(X.Y) = pa(X, Ju¥) + pp(X. JgY) + py (X, J, Y).

The tensoX is independent of the chosen local almost complex structuggecause of
the following proposition.

Proposition 5.6. Let (M, g, (Jy), V) be afour-dimensional QKT manifold. Then:

K = —Ric+ V& — 3(81)g, (5.65)
SkewRic) = —3(dt, Fo)Foy — 3Jo(df)), o« =1,2,3, (5.66)
Ric® = Sym(Ric) + 3(|t[>g —t ® 1), (5.67)

where (, ) is the scalar product of tensors induced by g, Skew ¢esp. Sym) denotes the
skew-symmetric (resp. symmetric) part of a tensor.
In particular, the Ricci tensor is symmetric if and only if the torsion 1-formis closed.

Proof. We use (3.41). From (3.42) and (5.63), we obtain
Dy(X, JuY) = (Vxt)Y — (Vyt)JeX, a=1273. (5.68)

To computeB,,, we need the following general identity.
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Lemma 5.7. On a four-dimensional QKT manifold, we have
=0.

sz 8T (X V), T(Z,U))

Proof. Since X(\T(Zg(T(X’ Y), T(Z,U)) is a 4-form, it is sufficient to check the equality

for a basis of typg X, J, X, JgX, J, X}. The last claim is obvious because of (5.59).
For eachr € {1, 2, 3}, Lemma 5.7, (5.63) and (5.64) yield

4

o
Bo(X, JuY) =) (VxT)(JaY, €, Juei)
i=1 o YE;
= (Vxt)Y + (V,yt)Ju X — 8tg(X, Y). (5.69)

Substituting (5.68) and (5.69) into (3.41) and putting: 1, we derive (5.65) sinc&$: =
Vt.Takingthetracein (5.64), we g@le(vei T)(e, X, Y) = %Zledt(e,-, Jue))Fo(X,Y)
+dt(Ju X, JiY), 2 = 1,2,3. Then (5.67) follows from the last equality and Remark 3.1.
Eqg. (5.67) is a direct consequence of (3.37) and (5.59). a

A 4n-dimensional QKT manifoldM, g, (J,), V) is said to be &instein QKT manifold
if the symmetric part Sym(Ric) of the Ricci tensorVfis a scalar multiple of the metrig,
i.e. Sym(Ric) = (Scal4n)g, where Scak= tr, Ric is the scalar curvature &f.
We note that the scalar curvature ‘Scal’ of a Einstein QKT manifold may not be a constant.
We shall say that a four-dimensional QKT manifoldI8(1)-Einstein if the symmet-
ric part Sym{K) of the tensorK is a scalar multiple of the metrig since the tensok
is determined by the SP(1)-part of the curvature. On an SP(1)-Einstein QKT manifold
Sym(K) = 1(Scaf)g, where Scdl = tr k.

For a given QKT manifold with torsion 1-formn, we consider the corresponding
Weyl structureVW, i.e. the unique torsion-free linear connection determined by the
condition

VWe=—r®g. (5.70)

Conversely, in dimension 4, to a given Weyl structi¥g = ¥ ® g, we associate the
QKT connection with torsioil” = %(—1). Note that a given Weyl structure on a conformal
manifold (M, [g]) does not depend on the particularly chosen metric[¢], but depends

on the conformal clasg]. A Weyl structure is said to bEinstein-\Weyl if the symmetric

part SymRicV) of its Ricci tensor is a scalar multiple of the metgic Wey! structures

and especially Einstein—Weyl structures have been much studied. For a nice overview of
Einstein—Weyl geometry, see [13]. The next theorem shows the link between Einstein—Weyl
geometry and SP(1)-Einstein QKT manifolds in dimension 4.

Theorem5.8. Let (M, g, (J,), V) beafour-dimensional QKT manifoldwithtorsion 1-form
t. The following conditions are equivalent:

1. (M, g, (Jy), V) isan SP(1)Einstein QKT manifold.
2. The corresponding Weyl structureis a Einstein—Weyl structure.
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Proof. The Weyl connectiotvV determined by (5.70) is given explicitly by
VXYY = VY + (XY + 31(1)X — 2g(x, 1)i*.
The symmetric part of its Ricci tensor is equal to
Sym(Ric") = Ric* — Sym(Vér) — 2([t1%g —t ® 1) + 2(51)s. (5.71)

Keeping in mind tha$¢s = Vt, we get from (5.65), (5.67) and (5.71) that SgRic") =
—Sym(K). The theorem follows from the last equality. |

It is well known [6,43] that if there exists a hypercomplex structure on a four-
dimensional conformal manifold then the conformal structure has anti-self-dual Weyl
tensor (see also [19]). Every four-dimensional hypercomplex manifdldg, (Hy)), i.e.

(an oriented anti-self-dual 4-manifold) carries a unique HKT structure in view of the results

in [17,19]. Indeed, le® = 6, = 6 = 6, be the common Lie form. The unique HKT
structure is defined by = V8§ — % x 0 [19] (the uniqueness is a consequence of a gen-
eral result in [17], see also [20]). The HKT structure on a four-dimensional hypercomplex
manifold is SP(1)-Einstein since the tengbwvanishes. The corresponding Weyl structure

to the given HKT structure on a four-dimensional hyper Hermitian manifold is the Obata
connection [19], i.e. the unique torsion-free linear connection which preserves each of the
three hypercomplex structures. As a consequence of Theorem 5.8, we recover the result in
[39] which states that the Obata connection of a hypercomplex 4-manifold is Einstein—Weyl
and the symmetric part of its Ricci tensor is zero.

Theorem 5.8 and (5.65) show that every Einstein—Wey! structure determined by (5.70) on
a four-dimensional conformal manifold whose vector field dual to the 1-foisrKilling,
induces a Einstein and SP(1)-Einstein QKT structure.

Corollary 5.9. Let (M, [g], VW) be a compact four-dimensional Einstein-Weyl manifold.
Then the corresponding QKT structure to the Gauduchon metric of VW is Einstein and
SP(1)Einstein.

Proof. On a compact Einstein—Weyl manifold the vector field dual to the Lie form of the
Gauduchon metric is Killing by the result of Tod [44]. Then the claim follows from Theorem
5.8 and (5.65). O

The Ricci tensor of a four-dimensional QKT manifold is symmetric iff the torsion 1-form
is closed by Proposition 5.6. Applying Theorem 3 in [16] and using Theorem 5.8, we obtain
the following corollary.

Corollary 5.10. Let (M, g, (J,), V) be a four-dimensional compact SP(1)Einstein QKT
manifold with symmetric Ricci tensor. Suppose that the torsion 1-formisnot exact. Thenthe
torsion 1-form corresponding to the Gauduchon metric gg of (M, g, (Jy), V) is parallel
with respect to the Levi-Civita connection of gg and the universal cover of (M, gg) is
isometric to R x $3. In particular, the quaternionic bundle (J,) admits hypercomplex
structure.
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A lot is known about Einstein—Weyl manifolds (see a nice survey [13]). There are many
(compact) Einstein—Weyl 4-manifolds (e$f.® $2). Among them there are (anti)-self-dual
as well as non-(anti)-self-dual. We mention here the Einstein—Weyl examples of Bianchi IX
type metric [11,28-30]. All these Einstein—Weyl 4-manifolds admit SP(1)-Einstein QKT
structures by Theorem 5.8.

It is also known that there are obstructions to the existence of Einstein—Weyl structures
on compact 4-manifold [38]. If the manifold is finitely covered byI'? ® $2 which cannot
be Einstein—~Weyl the? does not admit Einstein—Weyl structure and therefore there are
no SP(1)-Einstein structures .
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