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Abstract

The target space of a(4,0) supersymmetric two-dimensional sigma model with Wess–Zumino
term has a connection with totally skew-symmetric torsion and holonomy contained in SP(n)·SP(1),
QKT connection. We study the geometry of QKT connections. We find conditions to the existence
of a QKT connection and prove that if it exists it is unique. We show that QKT geometry persist
in a conformal class of metrics which allows us to obtain a lot of (compact) examples of QKT
manifolds. We present a (local) description of four-dimensional homogeneous QKT structures
relying on the known result of naturally reductive homogeneous Riemannian manifolds. We consider
Einstein-like QKT manifold and find closed relations with Einstein–Weyl geometry in dimension
4. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and statement of the results

An almost hypercomplex structure on a 4n-dimensional manifoldM is a tripleH =
(Jα), α = 1,2,3, of almost complex structuresJα : TM → TM satisfying the quaternionic
identitiesJ 2

α = −id andJ1J2 = −J2J1 = J3. When eachJα is a complex structure,H is
said to be a hypercomplex structure onM.
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An almost quaternionic structure onM is a rank-3 subbundleQ ⊂ End(TM) which
is locally spanned by almost hypercomplex structureH = (Jα); such a locally defined
triple H will be called an admissible basis ofQ. A linear connection∇ on TM is called
quaternionic connection if∇ preservesQ, i.e. ∇Xσ ∈ Γ (Q) for all vector fieldsX and
smooth sectionsσ ∈ Γ (Q). An almost quaternionic structure is said to be a quaternionic
if there is a torsion-free quaternionic connection. AQ-Hermitian metric is a Riemannian
metric which is Hermitian with respect to each almost complex structure inQ. An almost
quaternionic (resp. quaternionic) manifold withQ-Hermitian metric is called an almost
quaternionic Hermitian (resp. quaternionic Hermitian) manifold.

Forn = 1, an almost quaternionic structure is the same as an oriented conformal structure
and it turns out to be always quaternionic. Whenn ≥ 2, the existence of torsion-free
quaternionic connection is a strong condition which is equivalent to the 1-integrability
of the associated GL(n,H )SP(1) structure [10,33,43]. If the Levi-Civita connection of a
quaternionic Hermitian manifold(M, g,Q) is a quaternionic connection then(M, g,Q)
is called quaternionic Kähler (briefly QK). This condition is equivalent to the statement
that the holonomy group ofg is contained in SP(n) · SP(1) [1,2,25,40,41]. If on a QK
manifold there exist an admissible basis(H) such that each almost complex structure
(Jα) ∈ (H), α = 1,2,3 is parallel with respect to the Levi-Civita connection then the
manifold is called hyper Kähler (briefly HK). In this case, the holonomy group ofg is
contained in SP(n).

The notions of quaternionic manifolds arise in a natural way from the theory of supersym-
metric sigma models. The geometry of the target space of two-dimensional sigma models
with extended supersymmetry is described by the properties of a metric connection with
torsion [14,22]. The geometry of(4,0) supersymmetric two-dimensional sigma models
without Wess–Zumino term (torsion) is a hyper Kähler manifold. In the presence of torsion
the geometry of the target space becomes hyper Kähler with torsion (briefly HKT) [23].
This means that the complex structuresJα, α = 1,2,3, are parallel with respect to a metric
quaternionic connection with totally skew-symmetric torsion [23]. Local(4,0) supersym-
metry requires that the target space of two-dimensional sigma models with Wess–Zumino
term be either HKT or quaternionic Kähler with torsion (briefly QKT) [32] which means
that the quaternionic subbundle is parallel with respect to a metric linear connection with
totally skew-symmetric torsion and the torsion 3-form is of type(1,2)+ (2,1)with respect
to all almost complex structures inQ. The target space of two-dimensional(4,0) super-
symmetric sigma models with torsion coupled to(4,0) supergravity is a QKT manifold
[24]. If the torsion of a QKT manifold is a closed 3-form then it is called strong QKT
manifold. The properties of HKT and QKT geometries strongly resemble those of HK
and QK ones, respectively. In particular, HKT [23] and QKT [24] manifolds admit twistor
constructions with twistor spaces which have similar properties to those of HK [21] and
QK [40–42].

The main object of interest in this paper is the differential geometric properties of QKT
manifolds. We find necessary and sufficient conditions to the existence of a QKT connection
in terms of the Kähler 2-forms and show that the QKT connection is unique if dimension is at
least 8 (see Theorem 2.2). We prove that the QKT manifolds are invariant under conformal
transformations of the metric. This allows us to present a lot of (compact) examples of QKT
manifolds. In particular, we show that the compact quaternionic Hopf manifolds studied in
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[35], which do not admit a QK structure, are QKT manifolds. In the compact case, we show
the existence of Gauduchon metric, i.e. the unique conformally equivalent QKT structure
with co-closed torsion 1-form.

It is shown in [24] that the twistor space of a QKT manifold is always complex manifold
provided the dimension is at least 8. It admits complex contact (resp. Kähler) structure if
the torsion 4-form is of type(2,2) and some additional non-degenerativity (positivity) con-
ditions are fulfilled [24]. Most of the known examples of QKT manifolds are homogeneous
constructed in [34]. However, there are no homogeneous proper QKT manifolds (i.e. QKT
which is not QK or HKT) with torsion 4-form of type(2,2) in dimensions greater than 4
by the result of Opfermann and Papadopoulos [34]. We generalise this result showing that
there are no proper QKT manifolds with torsion 4-form of type(2,2) provided that the
torsion is parallel and dimension is at least 8.

In dimension 4, a lot of examples of QKT manifolds are known [24,34]. In particular,
examples of homogeneous QKT manifolds are constructed in [34]. We notice that there are
many (even strong) QKT structures in dimension 4, all depending on an arbitrary 1-form. We
give a local description of four-dimensional QKT manifolds with parallel torsion; namely
such a QKT manifold is a Riemannian product of a real line and a three-dimensional
Riemannian manifold. We observe that homogeneous QKT manifolds are precisely naturally
reductive homogeneous Riemannian manifolds, the objects which are well known. We
present a complete local description (up to an isometry) of four-dimensional homogeneous
QKT which was known in the setting of naturally reductive homogeneous 4-manifold [27].
In the last section, we consider four-dimensional Einstein-like QKT manifold and find a
closed relation with Einstein–Weyl geometry in dimension 4. In particular, we show that
every four-dimensional HKT manifold is of this type.

2. Characterisations of QKT connection

Let (M, g, (Jα) ∈ Q,α = 1,2,3) be a 4n-dimensional almost quaternionic manifold
with Q-Hermitian Riemannian metricg and an admissible basis(Jα). The Kähler form
Fα of eachJα is defined byFα = g(·, Jα). The corresponding Lie forms are given by
θα = δFα ◦ Jα.

For an r-form ψ , we denote byJαψ the r-form defined byJαψ(X1, . . . , Xr) :=
(−1)rψ(JαX1, . . . , JαXr), α = 1,2,3. Then(dcψ)α = (−1)rJα dJαψ . We shall use the
notations dαFβ := (dcFβ)α, i.e. dαFβ(X, Y,Z) = −dFβ(JαX, JαY, JαZ), α, β = 1,2,3.

We recall the decomposition of a skew-symmetric tensorP ∈ Λ2T ∗M ⊗ TM with
respect to a given almost complex structureJα. The(1,1)-, (2,0)- and(0,2)-part ofP are
defined byP 1,1(JαX, JαY ) = P 1,1(X, Y ), P 2,0(JαX, Y ) = JαP

2,0(X, Y ), P 0,2(JαX, Y )

= −JαP 0,2(X, Y ), respectively.
For eachα = 1,2,3, we denote by dF+

α (resp. dF−
α ), the(1,2)+(2,1)-part (resp.(3,0)+

(0,3)-part) of dFα with respect to the almost complex structureJα. We consider the
following 1-form:

θα,β = −1

2

4n∑
i=1

dF+
α (X, ei, Jβei), α, β = 1,2,3.
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Here and furthere1, e2, . . . ,4n is an orthonormal basis of the tangential space.
Note thatθα,α = θα.
The Nijenhuis tensorNα of an almost complex structureJα is given byNα(X, Y ) =

[JαX, JαY ] − [X, Y ] − Jα[JαX, Y ] − Jα[X, JαY ].
The celebrated Newlander–Nirenberg theorem [31] states that an almost complex

structure is a complex structure if and only if its Nijenhuis tensor vanishes.
Let ∇ be a quaternionic connection, i.e.

∇Jα = −ωβ ⊗ Jγ + ωγ ⊗ Jβ, (2.1)

where theωα, α = 1,2,3 are 1-forms.
Here and henceforth(α, β, γ ) is a cyclic permutation of(1,2,3).
LetT (X, Y ) = ∇XY−∇YX− [X, Y ] be the torsion tensor of type(1,2) of ∇. We denote

by the same letter the torsion tensor of type(0,3) given byT (X, Y,Z) = g(T (X, Y ), Z).
The Nijenhuis tensor is expressed in terms of∇ as follows:

Nα(X, Y )= 4T 0,2
α (X, Y )+ (∇JαXJα)(Y )− (∇JαY Jα)(X)

− (∇Y Jα)(JαX)+ (∇XJα)(JαY ), (2.2)

where the(0,2)-partT 0,2
α of the torsion with respect toJα is given by

T 0,2
α (X, Y ) = 1

4(T (X, Y )− T (JαX, JαY )+ JαT (JαX, Y )+ JαT (X, JαY )). (2.3)

We recall that if a 3-formψ is of type(1,2) + (2,1) with respect to an almost complex
structureJ then it satisfies the equality

ψ(X, Y,Z) = ψ(JX, JY, Z)+ ψ(JX, Y, JZ)+ ψ(X, JY, JZ). (2.4)

Definition. An almost quaternionic Hermitian manifold(M, g, (Hα) ∈ Q) is QKT
manifold if it admits a metric quaternionic connection∇ with totally skew-symmetric
torsion which is(1,2) + (2,1)-form with respect to eachJα, α = 1,2,3. If the torsion
3-form is closed then the manifold is said to bestrong QKT manifold.

It follows that the holonomy group of∇ is a subgroup of SP(n) · SP(1).
By means of (2.1), (2.2) and (2.4), the Nijenhuis tensorNα of Jα, α = 1,2,3, on a QKT

manifold is given by

Nα(X, Y ) = Aα(Y )JβX − Aα(X)JβY − JαAα(Y )JγX + JαAα(X)Jγ Y, (2.5)

where

Aα = ωβ + Jαωγ . (2.6)

Remark 2.1. The definition of QKT manifolds given above is equivalent to that given in
[24] because the requirement the torsion to be(1,2) + (2,1)-form with respect to each
Jα, α = 1,2,3, is equivalent, by means of (2.5), to the fourth condition of (4) in [24]. The
torsion of∇ is (1,2) + (2,1)-form with respect to any (local) almost complex structure
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J ∈ Q [24]. This follows also from (2.5) and the general formula (6) in [4] which expresses
NJ in terms ofNJ1, NJ2, NJ3. In fact, it is sufficient that the torsion is a(1,2)+ (2,1)-form
with respect to the only two almost complex structures of(H) since the formula (3.4.4)
in [3] gives the necessary expression ofNJ3 byNJ1 andNJ2. Indeed, it is easy to see that
the formula (3.4.4) in [3] holds for the(0,2)-partT 0,2

α , α = 1,2,3, of the torsion. Hence,
the vanishing of the(0,2)-part of the torsion with respect to any two almost complex
structures in(H) implies the vanishing of the(0,2)-part of T with respect to the third
one.

On a QKT manifold there are three naturally associated 1-forms to the torsion defined by

tα(X) = −1

2

4n∑
i=1

T (X, ei, Jαei), α = 1,2,3. (2.7)

We have the following proposition.

Proposition 2.1. On a QKT manifold, J1t1 = J2t2 = J3t3.

Proof. Applying (2.4) with respect toJβ , we obtain

tα(X)= −1

2

4n∑
i=1

T (X, ei, Jαei) = −1

2

4n∑
i=1

T (X, Jβei, Jγ ei)

= 1

2

4n∑
i=1

T (JβX, ei, Jγ ei)− 1

2

4n∑
i=1

T (JβX, Jβei, Jαei)+ 1

2

4n∑
i=1

T (X, ei, Jαei).

The last equality impliestα = Jβtγ which proves the assertion. �

The 1-form t = Jαtα is independent of the chosen almost complex structureJα by
Proposition 2.1. We shall call itthe torsion 1-form of a given QKT manifold.

Remark 2.2. Every QKT manifold is a quaternionic manifold. This is an immediate
consequence of (2.5) and Proposition 2.3 in [4].

However, the converse to the above property is not always true. In fact, we have the
following theorem.

Theorem 2.2. Let (M, g, (Jα) ∈ Q) be a 4n-dimensional (n > 1) quaternionic manifold
with Q-Hermitian metric g. Then M admits a QKT structure if and only if the following
conditions hold:

(dαFα)
+ − (dβFβ)

+ = 1
2(Kα ∧ Fβ − JβKβ ∧ Fα − (Kβ − JαKα) ∧ Fγ ), (2.8)

where (dαFα)+ denotes the (1,2)+(2,1)-part of (dαFα)with respect to the Jα, α = 1,2,3.
The 1-forms Kα, α = 1,2,3, are given by

Kα = 1

1 − n
(Jβθα + θα,γ ). (2.9)
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The metric quaternionic connection ∇ with torsion 3-form of type (1,2)+ (2,1) is unique
and is determined by

∇ = ∇g + 1
2((dαFα)

+ − 1
2(JαKα ∧ Fγ +Kα ∧ Fβ)), (2.10)

where ∇g is the Levi-Civita connection of g.

Proof. To prove the ‘if’ part, let∇ be a metric quaternionic connection satisfying (2.1)
which torsionT has the required properties. We follow the scheme in [17]. SinceT is
skew-symmetric, we have

∇ = ∇g + 1
2T . (2.11)

We obtain using (2.1) and (2.11) that

1
2(T (X, JαY,Z)+ T (X, Y, JαZ))

= −g((∇gXJα)Y, Z)+ ωβ(X)Fγ (Y, Z)− ωγ (X)Fβ(Y, Z). (2.12)

The tensor∇gJα is decomposed by parts according to∇Jα = (∇Jα)2,0 + (∇Jα)0,2, where
[17]

g((∇gXJα)2,0Y,Z) = 1
2((dFα)

+(X, JαY, JαZ)− (dFα)
+(X, Y, Z)), (2.13)

g((∇gXJα)0,2Y,Z)= 1
2(g(Nα(X, Y ), JαZ)− g(Nα(X,Z), JαY )

− g(Nα(Y, Z), JαX)). (2.14)

Taking the(2,0)-part in (2.12), we obtain using (2.13) that

T (X, JαY,Z)+ T (X, Y, JαY )= (dFα)+(X, JαY, JαZ)− (dFα)
+(X, Y, Z)

+Cα(X)Fγ (Y, Z)+ Cα(JαX)Fβ(Y, Z), (2.15)

where

Cα = ωβ − Jαωγ . (2.16)

The cyclic sum of (2.15) and the fact thatT and (dFα)+ are (1,2) + (2,1)-forms with
respect to eachJα, gives

T = (dαFα)
+ − 1

2(JαCα ∧ Fγ + Cα ∧ Fβ). (2.17)

Further, we take the contractions in (2.17) to get

Jαtα = −θα − JβCα, Jαtα = −Jγ θβ,α − nJγ Cβ,

Jαtα = Jβθγ,α − nJαCγ . (2.18)

Using Proposition 2.1, (2.6) and (2.16), we obtain consequently from (2.18) that

Aα = JαCβ + Jγ Cγ = Jβ(θγ − θβ), (2.19)

(n− 1)JβCα = θα − Jβθα,γ . (2.20)

Then (2.8) and (2.9) follow from (2.17) and (2.20).
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For the converse, we define∇ by (2.10). To complete the proof, we have to show that∇
is a quaternionic connection. We calculate

g((∇XJα)Y, Z)= g((∇gXJα)Y, Z)+ 1
2(T (X, JαY,Z)+ T (X, Y, JαZ))

= ωβ(X)Fγ (Y, Z)− ωγ (X)Fβ(Y, Z),

where we used (2.6), (2.9), (2.13), (2.14), (2.16) and (2.19) and the compatibility condition
(2.8) to get the last equality. The uniqueness of∇ follows from (2.10) as well as from
Theorem 10.3 in [33] which states that any quaternionic connection is entirely determined
by its torsion (see also [18]). �

In the case of HKT manifold,Kα = dF−
α = 0 and Theorem 2.2 is a consequence of

the general results in [17] (see also [20]) which imply that on a Hermitian manifold there
exists a unique linear connection with totally skew-symmetric torsion preserving the metric
and the complex structure, the Bismut connection. This connection was used by Bismut
[9] to prove a local index theorem for the Dolbeault operator on non-Kähler manifold. The
geometry of this connection is referred to KT-geometry by physicists. Obstructions to the
existence of (non-trivial) Dolbeault cohomology groups on a compact KT-manifold are
presented in [5].

We note that (2.19) and (2.20) are also valid in the casen = 1.
We get, as a consequence of the proof of Theorem 2.2, the following integrability criterion

which is discovered in dimension 4 by Battaglia and Salamon (see [19]).

Proposition 2.3. The Nijenhuis tensors of a QKT manifold depend only on the difference
between the Lie forms. In particular, the almost complex structures Jα on a QKT manifold
(M, (Jα) ∈ Q, g,∇) are integrable if and only if

θα = θβ = θγ .

Proof. The Nijenhuis tensors are given by (2.5) and (2.19). �

Corollary 2.4. On a 4n-dimensional QKT manifold the following formulas hold:

Jβθα,γ = −Jγ θα,β,
(n2 + n)θα − nθβ − n2θγ + Jγ θβ,α + nJαθγ,β − (n+ 1)Jβθα,γ = 0. (2.21)

If n = 1, then

θα = Jβθα,γ = −Jγ θα,β .

Proof. The first formula follows directly from the system (2.18). Solving the system (2.18)
with respect toCα, we obtain

(n3 − 1)JβCα = (θα − Jγ θβ,α)+ n(θβ − Jαθγ,β)+ n2(θγ − Jβθα,γ ). (2.22)

Then (2.21) is a consequence of (2.20) and (2.22). The last assertion follows from
(2.20). �
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Corollary 2.5. On a 4n-dimensional (n > 1)QKT manifold the SP(1)-connection 1-forms
are given by

ωβ = 1

2
Jβ

(
θγ − θβ + 1

1 − n
θα

)
+ 1

2(1 − n)
θα,γ . (2.23)

Proof. The proof follows in a straightforward way from (2.6), (2.16), (2.19)
and (2.20). �

Theorem 2.2 and the above formulas lead to the following criterion.

Proposition 2.6. Let (M, g, (H)) be a 4n-dimensional (n > 1) QKT manifold. The
following conditions are equivalent:

1. (M, g, (H)) is an HKT manifold;
2. dαF+

α = dβF
+
β = dγ F+

γ ;
3. θα = Jβθγ,α.

Proof. If (M, g, (H)) is an HKT manifold, the connection 1-formsωα = 0, α = 1,2,3.
Then (2) and (3) follow from (2.8), (2.9), (2.16) and (2.20).

If (3) holds, then (2.19) and (2.20) yieldCα = Aα = 0, α = 1,2,3, sincen > 1.
Consequently, 2ωα = JβCβ − JβAβ = 0 by (2.6) and (2.16). Thus the equivalence of (1)
and (3) is proved.

Let (2) holds, then we compute thatθα = Jγ θβ,α. Sincen > 1, the equality (2.22) leads
to Cα = 0, α = 1,2,3, which forcesωα = 0, α = 1,2,3 as above. This completes the
proof. �

The next theorem shows that QKT manifolds are stable under a conformal transfor-
mations.

Theorem 2.7. Let (M, g, (Jα),∇) be a 4n-dimensional QKT manifold. Then every
Riemannian metric ḡ in the conformal class [g] admits a QKT connection. If ḡ = fg
for a positive function f then the QKT connection ∇̄ corresponding to ḡ is given by

ḡ(∇̄XY,Z)= fg(∇XY,Z)+ 1
2(df (X)g(Y, Z)+ df (Y )g(X,Z)− df (Z)g(X, Y ))

+ 1
2(Jα df ∧ Fα + Jβ df ∧ Fβ + Jγ df ∧ Fγ )(X, Y,Z). (2.24)

The torsion tensors T and T̄ and the torsion 1-forms t and t̄ of ∇ and ∇̄ are related by

T̄ = fT + Jα df ∧ Fα + Jβ df ∧ Fβ + Jγ df ∧ Fγ , (2.25)

t̄ = t − (2n+ 1)d lnf. (2.26)

Proof. First, we assumen > 1. We shall apply Theorem 2.2 to the quaternionic Hermitian
manifold(M, ḡ = fg, (Jα) ∈ Q). We denote the objects corresponding to the metricḡ by
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a line above the symbol, e.g.F̄α denotes the Kähler form ofJα with respect tōg. An easy
calculation gives the following sequence of formulas:

dαF̄
+
α = Jα df ∧ Fα + f dαF

+
α , θ̄α = θα + (2n− 1)d lnf,

θ̄α,γ = θα,γ − Jβ d lnf. (2.27)

We substitute (2.27) into (2.9), (2.19) and (2.23) to get

K̄α = Kα − 2Jβ d lnf, Ā = A, ω̄α = ωα − Jβ d lnf. (2.28)

Using (2.27) and (2.28), we verify that the conditions (2.8) with respect to the metricḡ

are fulfilled. Theorem 2.2 implies that there exists a QKT connection∇̄ with respect to
(ḡ,Q). Using the well-known relation between the Levi-Civita connections of conformally
equivalent metrics, (2.27) and (2.28), we obtain (2.24) from (2.10).

If n = 1, we define the new QKT connection with respect to(ḡ,Q) by (2.24).
Using (2.24), we get (2.25) and consequently (2.26). �

Theorem 2.7 allows us to find distinguished QKT structures on a compact QKT manifold.
To this end, we shall use the Gauduchon theorem for the existence of a Gauduchon metric on
a compact Hermitian or Weyl manifold [15,16]. This theorem can be formulated in our no-
tations as follows: to a given compact QKT manifold(M, g, (Jα),∇, T ) there always exists
a unique (up to homothety) conformally related QKT manifold(M, gG = fg, (Jα),∇G, TG)

such that the corresponding torsion 1-formtG is co-closed with respect togG. The key point
is that the torsion 1-form transforms under conformal rescaling according to (2.26) (see
[44, Appendix 1]). Application of this theorem leads to the following theorem.

Theorem 2.8. In the conformal class of a compact QKT manifold there exists a unique
(up to homothety) metric with co-closed torsion 1-form.

We shall call the metric with co-closed torsion 1-form on a compact QKT manifold the
Gauduchon metric.

Corollary 2.9. On a compact QKT manifold with closed (non-exact) torsion 1-form the
Gauduchon metric gG cannot have positive definite Riemannian Ricci tensor. In particular,
if it is a Einstein manifold then it is of non-positive scalar curvature.

Further, if the Gauduchon metric is Ricci flat then the corresponding torsion 1-form tG
is parallel with respect to the Levi-Civita connection of gG.

Proof. The two form dt is invariant under conformal transformations by (2.26). Then
the Gauduchon metric has harmonic torsion 1-form, i.e. dt = δt = 0. The claim fol-
lows from the Weitzenböeck formula (see, e.g. [8])

∫
M

{|dt |2 + |δt |2} dV = ∫
M

{|∇gt |2 +
Ricg(t#, t#)} dV = 0, wheret# is the dual vector field oft , | · | is the usual tensor norm and
dV the volume form. �

Theorem 2.7 allows us to supply a large class of (compact) QKT manifold. Namely, any
conformal metric of a QK, HK or HKT manifold will give a QKT manifold. This leads to the
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notion oflocally conformally QK (resp. locally conformally HK, resp. locally conformally
HKT) manifolds (briefly l.c.QK (resp. l.c.HK, resp. l.c.HKT) manifolds) in the context of
QKT geometry.

The l.c.QK and l.c.HK manifolds have already appeared in the context of Hermitian–
Einstein–Weyl structures [37] and of 3-Sasakian structures [12]. These two classes of quater-
nionic manifolds are studied in detail (mostly in the compact case) in [35,36].

We recall that a quaternionic Hermitian manifold(M, g,Q) is said to be l.c.QK (resp. l.c.
HK, resp. l.c.HKT) manifold if each pointp ∈ M has a neighbourhoodUp such thatg|Up
is conformally equivalent to a QK (resp. HK, resp. HKT) metric. There are compact l.c.QK
manifold which do not admit any QK structure [35]. Typical examples of compact l.c.QK
manifolds without any QK structure are the quaternionic Hopf spacesH = (Hn− {0})/Γ ,
whereΓ is an appropriate discrete group acting diagonally on the quaternionic coordinates
inHn (see [35]).

We recall that on a l.c.QK manifold the 4-formΩ = ∑3
α=1Fα ∧ Fα satisfies dΩ =

ω∧Ω,dω = 0, whereω is locally defined byω = 2 d lnf . On a l.c.QK manifold viewed as
a QKT manifold by Theorem 2.7 the torsion 1-form is equal tot = (2n+1)ω by (2.26). The
QK manifolds are Einstein provided the dimension is at least 8 [1,7]. Then, the Gauduchon
theorem [16] applied to l.c.QK manifold in [35] can be stated in our context as follows.

Corollary 2.10. Let (M, g) be a compact 4n-dimensional (n > 1) QKT manifold which is
l.c.QK and assume that no metric in the conformal class [g] of g is QK. Then the torsion
1-form of the Gauduchon metric gG is parallel with respect to the Levi-Civita connection
of gG.

Theorems 2.2 and 2.7 together with Propositions 2.3 and 2.6 imply the following.

Corollary 2.11. Every l.c.QK manifold admits a QKT structure.
Further, if (M, g, (Jα),∇) is a 4n-dimensional (n > 1) QKT manifold then:

1. (M, g, (Jα),∇) is a l.c.QK manifold if and only if

T = 1

2n+ 1
(tα ∧ Fα + tβ ∧ Fβ + tγ ∧ Fγ ), dt = 0; (2.29)

2. (M, g, (Jα),∇) is a l.c.HKT manifold if and only if the 1-form θα−Jβθα,γ is closed, i.e.

d(θα − Jβθα,γ ) = 0;
3. (M, g, (Jα),∇) is a l.c.HK manifold if an only if (2.29)holds and

θα − Jβθα,γ = 2(1 − n)

2n+ 1
t.

3. Curvature of a QKT space

LetR = [∇,∇]−∇[,] be the curvature tensor of type(1,3) of ∇. We denote the curvature
tensor of type(0,4)R(X, Y,Z, V ) = g(R(X, Y )Z, V ) by the same letter. There are three
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Ricci forms given by

ρα(X, Y ) = 1

2

4n∑
i=1

R(X, Y, ei, Jαei), α = 1,2,3.

Proposition 3.1. The curvature of a QKT manifold (M, g, (Jα),∇) satisfies the following
relations:

R(X, Y )Jα = 1

n
(ργ (X, Y )Jβ − ρβ(X, Y )Jγ ), (3.30)

ρα = dωα + ωβ ∧ ωγ . (3.31)

Proof. We follow the classical scheme (see, e.g. [3,8,36]). Using (2.1), we obtain

R(X, Y )Jα = −(dωβ + ωγ ∧ ωα)(X, Y )Jγ + (dωγ + ωα ∧ ωβ)(X, Y )Jβ.

Taking the trace in the last equality, we get

ρα(X, Y )= 1

2

4n∑
i=1

R(X, Y, ei, Jαei) = 1

2

4n∑
i=1

R(X, Y, Jβei, Jγ ei)

= −1

2

4n∑
i=1

R(X, Y, ei, Jαei)+ 2n(dωα + ωβ ∧ ωγ )(X, Y )Jβ. �

Using Proposition 3.1, we find a simple necessary and sufficient condition a QKT manifold
to be an HKT one, i.e. the holonomy group of∇ to be a subgroup of SP(n).

Proposition 3.2. A 4n-dimensional (n > 1) QKT manifold is an HKT manifold if and only
if all the three Ricci forms vanish, i.e. ρ1 = ρ2 = ρ3 = 0.

Proof. If a QKT manifold is an HKT manifold then the holonomy group of∇ is contained
in SP(n). This impliesρα = 0,α = 1,2,3.

For the converse, let the three Ricci forms vanish. Eq. (3.31) mean that the curvature of
the SP(1) connection onQ vanish. Then there exists a basis(Iα, α = 1,2,3) of almost
complex structures onQand eachIα is∇-parallel, i.e. the corresponding connection 1-forms
ωIα = 0, α = 1,2,3. Then eachIα is a complex structure, by (2.5) and (2.6). This implies
that the QKT manifold is an HKT manifold. �

We denote by Ric,Ricg the Ricci tensors of the QKT connection and of the Levi-Civita
connection, respectively. In fact Ric(X, Y ) = ∑4n

i=1R(ei, X, Y, ei).
Our main technical result is the following proposition.

Proposition 3.3. Let (M, g, (Jα),∇) be a 4n-dimensional QKT manifold. The following
formulas hold:



246 S. Ivanov / Journal of Geometry and Physics 41 (2002) 235–257

nρα(X, JαY )+ ρβ(X, JβY )+ ργ (X, Jγ Y )

= −nRic(XY)+ 1
4n(dT )α(X, JαY )+ 1

2n(∇T )α(X, JαY ), (3.32)

(n− 1)ρα(X, JαY )= −n(n− 1)

n+ 2
Ric(X, Y )+ n

4(n+ 2)
{(n+ 1)(dT )α(X, JαY )

− (dT )β(X, JβY )− (dT )γ (X, Jγ Y )},
+ n

2(n+ 2)
{(n+ 1)(∇T )α(X, JαY )− (∇T )β(X, JβY )

− (∇T )γ (X, Jγ Y )}, (3.33)

where (dT )α(X, Y ) = ∑4n
i=1dT (X, Y, ei, Jαei), (∇T )α(X, Y ) = ∑4n

i=1(∇XT )(Y, ei, Jαei).

Proof. Since the torsion is a 3-form, we have

(∇gXT )(Y, Z,U) = (∇XT )(Y, Z,U)+ 1

2
σ

XYZ
{g(T (X, Y ), T (Z,U))}, (3.34)

where
σ

XYZ
denote the cyclic sum ofX, Y,Z.

The exterior derivative dT is given by

dT (X, Y,Z,U)= σ

XYZ
{(∇XT )(Y, Z,U)+ g(T (X, Y ), T (Z,U))}

− (∇UT )(X, Y,Z)+ σ

XYZ
{g(T (X, Y ), T (Z,U))}. (3.35)

The first Bianchi identity for∇ states

σ

XYZ
R(X, Y,Z,U) = σ

XYZ
{(∇XT )(Y, Z,U)+ g(T (X, Y ), T (Z,U))}. (3.36)

We denote byB the Bianchi projector, i.e.B(X, Y,Z,U) = σ

XYZ
R(X, Y,Z,U).

The curvatureRg of the Levi-Civita connection is connected byR in the following way:

Rg(X, Y,Z,U)=R(X, Y,Z,U)− 1
2(∇XT )(Y, Z,U)+ 1

2(∇Y T )(X,Z,U)
− 1

2g(T (X, Y ), T (Z,U))− 1
4g(T (Y, Z), T (X,U))

− 1
4g(T (Z,X), T (Y,U)). (3.37)

DefineD byD(X, Y,Z,U) = R(X, Y,Z,U)− R(Z,U,X, Y ), we obtain from (3.37)

D(X, Y,Z,U)= 1
2(∇XT )(Y, Z,U)− 1

2(∇Y T )(X,Z,U)
− 1

2(∇ZT )(U,X, Y )+ 1
2(∇UT )(Z,X, Y ), (3.38)

sinceDg of Rg is zero.
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Using (3.30) and (3.36), we find the following relation between the Ricci tensor and the
Ricci forms:

ρα(X, Y )= −1

2

4n∑
i=1

(R(Y, ei, X, Jαei)+ R(ei, X, Y, Jαei))+ 1

2

4n∑
i=1

B(X, Y, ei, Jαei)

= −1

2
Ric(Y, JαX)+ 1

2
Ric(X, JαY )+ 1

2

4n∑
i=1

B(X, Y, ei, Jαei)

+ 1

2n
{ρβ(Jγ Y,X)− ρβ(JγX, Y )+ργ (JβX, Y )−ργ (JβY,X)}. (3.39)

On the other hand, using (3.30), we calculate

4∑
i=1

D(X, ei, Jαei, Y )=
4n∑
i=1

{R(X, ei, Jαei, Y )+ R(Y, ei, JαeiX)}

= −Ric(Y, JαX)− Ric(X, JαY )+ 1

n
{ρβ(X, Jγ Y )

+ ρβ(Y, JγX)− ργ (Y, JβX)− ργ (X, JβY )}. (3.40)

Combining (3.39) and (3.40), we derive

nρα(X, JαY )+ ρβ(X, JβY )+ ργ (X, Jγ Y )

= −nRic(XY)+ 1
2nBα(X, JαY )+ 1

2nDα(X, JαY ), (3.41)

where the tensorsBα andDα are defined byBα(X, Y ) = ∑4n
i=1B(X, Y, ei, Jαei) and

Dα(X, Y ) = ∑4n
i=1D(X, ei, Jαei, Y ). Taking into account (3.38), we get the expression

Dα(X, Y ) = 1

2

4n∑
i=1

(∇XT )(Y, ei, Jαei)+ 1

2

4n∑
i=1

(∇Y T )(X, ei, Jαei), α = 1,2,3.

(3.42)

To calculateBα +Dα, we use (3.35) twice and (3.42). After some calculations, we derive

Bα(X, Y )+Dα(X, Y ) = 1

2

4n∑
i=1

dT (X, Y, ei, Jαei)+
4n∑
i=1

(∇XT )(Y, ei, Jαei),

α = 1,2,3. (3.43)

We substitute (3.43) into (3.41). Solving the obtained system, we obtain

(n− 1){ρα(X, JαY )− ρβ(X, JβY )} = 1
2n{(dT )α(X, JαY )− (dT )β(X, JβY )}
+ 1

2n{(∇T )α(X, JαY )− (∇T )β(X, JβY )}.
(3.44)

Finally, (3.41) and (3.44) imply (3.32). �
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Remark 3.1. The Ricci tensor of a QKT connection is not symmetric in general. From
(3.34) and (3.36) and the fact thatT is a 3-form we get the formula Ric(X, Y )−Ric(Y,X) =∑4n
i=1(∇gei T )(ei, X, Y ) = −δT (X, Y ). Hence, the Ricci tensor of a metric linear connec-

tion with totally skew-symmetric torsion is symmetric if and only if the torsion 3-form is
co-closed.

Corollary 3.4. Let (M, g,∇, T ) be a Riemannian manifold with a metric connection ∇ of
totally skew-symmetric torsion T . The following conditions are equivalent:

1. ∇gT = 1
4 dT ;

2. ∇T is a 4-form;
3. R(X, Y,Z,U) = R(Z,U,X, Y ).

Proof. Eqs. (3.35) and (3.36) yield

σ

XYZ
R(X, Y,Z,U)− dT (X, Y,Z,U)+ σ

XYZ
{g(T (X, Y ), T (Z,U))}

= (∇UT )(X, Y,Z).
The last equality together with (3.34) and (3.38) lead to the desired equivalencies.�

4. QKT manifolds with parallel torsion and homogeneous QKT structures

Let (G/K, g) be a reductive (locally) homogeneous Riemannian manifold. The canon-
ical connection∇ is characterised by the properties∇g = ∇T = ∇R = 0 [26, p. 193].
A homogeneous quaternionic Hermitian manifold (resp. homogeneous hyper Hermitian)
manifold (G/K, g,Q) is a homogeneous Riemannian manifold with an invariant quater-
nionic Hermitian subbundleQ (resp. three invariant anti-commuting complex structures).
This means that the bundleQ (resp. each of the three complex structures) is parallel with
respect to the canonical connection∇. The torsion of∇ is totally skew-symmetric if and
only if the homogeneous Riemannian manifold is naturally reductive [26] (see also [34,45]).
Homogeneous QKT (resp. HKT) manifolds are homogeneous quaternionic Hermitian (resp.
homogeneous hyper Hermitian) manifold which are naturally reductive. Examples of homo-
geneous HKT and QKT manifolds are presented in [34]. The homogeneous QKT manifolds
in [34] are constructed from homogeneous HKT manifolds.

In this section, we generalise the result of Opfermann and Papadopoulos [34] which
states that there are no homogeneous QKT manifold with torsion 4-form dT of type(2,2)
in dimensions greater than 4. First, we prove the following technical result.

Proposition 4.1. Let (M, g, (Jα),∇) be a 4n-dimensional (n > 1) QKT manifold with
4-form dT of type (2,2) with respect to each Jα, α = 1,2,3. Suppose that the torsion is
parallel with respect to the QKT connection. Then the Ricci forms ρα are given by

ρα(X, JαZ) = λg(X, Y ), α = 1,2,3, (4.45)

where λ is a smooth function on M.
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Proof. Let the torsion be parallel, i.e.∇T = 0. Remark 3.1 shows that the Ricci tensor is
symmetric. The equalities (3.35) and (3.36) imply

B(X, Y,Z,U) = σ

XYZ
{g(T (X, Y ), T (Z,U))} = 1

2dT (X, Y,Z,U). (4.46)

We getD = 0 from Corollary 3.4.
Suppose now that the 4-form dT is of type(2,2) with respect to eachJα, α = 1,2,3.

Then it satisfies the equalities

dT (X, Y,Z,U)= dT (JαX, JαY,Z,U)+ dT (JαX, Y, JαZ,U)

+ dT (X, JαY, JαZ,U). (4.47)

The similar arguments as we used in the proof of Proposition 2.1 but applying (4.47) instead
of (2.4), yield the following lemma.

Lemma 4.2. On a QKT manifold with 4-form dT of type (2,2) with respect to each
Jα, α = 1,2,3, the following equalities hold:

(dT )1(X, J1Y ) = (dT )2(X, J2Y ) = (dT )3(X, J3Y ), (4.48)

(dT )α(X, JαY ) = −(dT )α(JαX, Y ), α = 1,2,3. (4.49)

We substitute (4.46) and (4.48) andD = 0 into (3.34) and (3.44) to get

ρ1(X, J1Y ) = ρ2(X, J2Y ) = ρ3(X, J3Y ), (4.50)

ρα(X, JαY ) = − n

n+ 2
Ric(X, Y )+ n

4(n+ 2)
(dT )α(X, JαY ), α = 1,2,3.

(4.51)

The equality (4.49) shows that the 2-form dTα is a(1,1)-form with respect toJα. Hence,
the dTα is (1,1)-form with respect to eachJα, α = 1,2,3, because of (4.48). Since the
Ricci tensor ‘Ric’ is symmetric, (4.51) shows that the Ricci tensor Ric is of hybrid type
with respect to eachJα, i.e. Ric(JαX, JαY ) = Ric(X, Y ), α = 1,2,3 and the Ricci forms
ρα, α = 1,2,3 are(1,1)-forms with respect to allJα, α = 1,2,3. Taking into account
(3.30), we obtain

R(X, JαX,Z, JαZ)+ R(X, JαX, JβZ, Jγ Z)+ R(JβX, JγX,Z, JαZ)

+R(JβX, JγX, JβZ, Jγ Z) = 1

n
(ρα(X, JαX)+ ρα(JβX, JγX))g(Z,Z)

= 2

n
ρα(X, JαX)g(Z,Z), (4.52)

where the last equality of (4.52) is a consequence of the following identity:

ρα(JβX, JγX) = −ρβ(JβX,X) = ρα(X, JαX).
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The left-hand side of (4.52) is symmetric with respect to the vectorsX,Z becauseD = 0.
Hence,ρα(X, JαX)g(Z,Z) = ρα(Z, JαZ)g(X,X), α = 1,2,3. The last equality together
with (4.50) implies (4.45). �

Theorem 4.3. Let (M, g, (Jα)) be a 4n-dimensional (n > 1) QKT manifold with 4-form
dT of type (2,2) with respect to each Jα, α = 1,2,3. Suppose that the torsion is parallel
with respect to the QKT connection. Then (M, g, (Jα)) is either an HKT manifold with
parallel torsion or a QK manifold.

Proof. We apply Proposition 4.1. If the functionλ = 0 thenρα = 0, α = 1,2,3, by (4.45)
and Proposition 3.2 implies that the QKT manifold is actually an HKT manifold.

Let λ �= 0. The condition (4.45) determines the torsion completely. We proceed
involving (3.31) into the computations as in [24]. We calculate using (2.1) and (4.45)
that

(∇Zρα)(X, Y ) = λ{ωβ(Z)Fγ (X, Y )− ωγ (Z)Fβ(X, Y )} − dλ(Z)Fα(X, Y ). (4.53)

Applying the operator d to (3.30), we get taking into account (4.45) that

dρα = λ(Fβ ∧ ωγ − ωβ ∧ Fγ ). (4.54)

On the other hand, we have

dρα = σ

XYZ
{(∇Zρα)(X, Y )+ λ(T (X, Y ), JαZ)}, α = 1,2,3. (4.55)

Comparing the left-hand sides of (4.54) and (4.55) and using (4.53), we derive

λ
σ

XYZ
{(T (X, Y ), JαZ)} = dλ ∧ Fα(X, Y,Z), α = 1,2,3.

The last equality impliesλT = Jα dλ ∧ Fα, α = 1,2,3. If λ is a non-zero constant then
T = 0 and we recover the result of Howe et al. [24]. Ifλ is not a constant then there exists
a pointp ∈ M and a neighbourhoodVp of p such thatλ|Vp �= 0. Then

T = Jα d lnλ ∧ Fα, α = 1,2,3. (4.56)

We take the trace in (4.56) to obtain

4(n− 1)Jα d lnλ = 0, α = 1,2,3. (4.57)

Eq. (4.57) forces dλ = 0 sincen > 1 and, consequently,T = 0 by (4.56). Hence, the QKT
space is a QK manifold which completes the proof. �

On a locally homogeneous QKT manifold the torsion and curvature are parallel and
Theorem 4.3 leads to the following.

Theorem 4.4. A (locally) homogeneous 4n-dimensional (n > 1) QKT manifold with tor-
sion 4-form dT of type (2,2) is either (locally) homogeneous HKT space or a (locally)
symmetric QK space.
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Theorem 4.4 shows that there are no homogeneous (proper) QKT manifolds with torsion
4-form of type(2,2) in dimensions greater than 4 which is proved in [34] by different
methods using the Lie algebra arguments.

5. Four-dimensional QKT manifolds

In dimension 4, the situation is completely different from that described in Theorems
2.2 and 4.3 in higher dimensions. For a given quaternionic structure on a four-dimensional
manifold(M, g(H)) (or equivalently, given an orientation and a conformal class of Rieman-
nian metrics [19]) there are many QKT structures [24]. More precisely, all QKT structures
associated with(g, (H)) depend on a 1-formψ due to the general identity

∗ψ = −Jψ ∧ F, (5.58)

where∗ is the Hodge∗-operator,J is ag-orthogonal almost complex structure with Kähler
formF (see [19]). Indeed, for any given 1-formψ , we may define a QKT connection∇ as
follows:∇ = ∇g+ 1

2∗ψ . Conversely, any 3-formT can be represented byT = −∗(∗T )and
the connection given above is a quaternionic connection with torsionT = ∗ψ . Hence, a QKT
structure on a four-dimensional oriented manifold is a pair(g, t) of a Riemannian metricg
and a 1-formt . The choice ofg generates three almost complex structures(Jα), α = 1,2,3,
satisfying the quaternionic identities [19]. The torsion 3-formT is given by

T = ∗t = tα ∧ Fα = tβ ∧ Fβ = tγ ∧ Fγ . (5.59)

As a consequence of (5.58), we obtain∗dT = ∗d ∗ t = −δt . The last identity means that
the torsion 3-formT is closed if and only if the 1-formt is co-closed. Thus, in dimension
4, there are many strong QKT structures.

In higher dimensions the conformal change of the metric induces a unique QKT structure
by Theorem 2.7. We may define a QKT connection corresponding to a conformally equiv-
alent metricḡ = fg in dimension 4 by (2.24) and call this conformal QKT transformation.
In the compact case, taking the Gauduchon metric of Theorem 2.7, we obtain the following
proposition.

Proposition 5.1. Let (M, g, (H),∇) be a compact four-dimensional QKT manifold. In the
conformal class [g] there exists a unique (up to homotety) strong QKT structure conformally
equivalent to the given one.

Further, we consider QKT structures with parallel torsion. We have the following theorem.

Theorem 5.2. A four-dimensional QKT manifoldM with parallel torsion 3-form is a strong
QKT manifold, the torsion 1-form is parallel with respect to the Levi-Civita connection and
M is locally isometric to the product N3 ×R, where N3 is a three-dimensional Rieman-
nian manifold admitting a Riemannian connection ∇ with totally skew-symmetric torsion,
parallel with respect to ∇.

Proof. The proof is based on the following lemma.
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Lemma 5.3. A four-dimensional QKT manifold has parallel torsion 3-form if and only if
it has parallel torsion 1-form with respect to the Levi-Civita connection.

Proof. We calculate using (2.1) and (5.59) that

(∇ZT )(X, Y,U)= tα(U)(ωβ(Z)Fγ (Y,X)− ωγ (Z)Fβ(Y,X))

− tα(X)(ωβ(Z)Fγ (Y,U)− ωγ (Z)Fβ(Y,U))

+ tα(Y )(ωβ(Z)Fγ (X,U)− ωγ (Z)Fβ(X,U))

+Fα(Y,U)(∇Ztα)X + Fα(X, Y )(∇Ztα)U − Fα(X,U)(∇Ztα)Y.
(5.60)

Taking the trace in (5.60), we obtain

4∑
i=1

(∇ZT )(X, ei, Jαei) = −2(∇Ztα)X − 2(ωβ(Z)tγ (X)− ωγ (Z)tβ(X)). (5.61)

Using (2.1), we get

(∇Ztα)X = (∇Zt)JαX − (ωβ(Z)tγ (X)− ωγ (Z)tβ(X)). (5.62)

Eqs. (5.61) and (5.62) yield

4∑
i=1

(∇ZT )(JαX, ei, Jαei) = 2(∇Zt)X, α = 1,2,3. (5.63)

Then∇t = 0, since the torsion is parallel. But∇gt = ∇t by (2.11) and (5.59). Hence,
∇gt = 0.

For the converse, we insert (5.62) into (5.60) to get

(∇ZT )(X, Y,U)= Fα(Y,U)(∇Zt)JαX + Fα(X, Y )(∇Zt)JαU
+Fα(U,X)(∇Zt)JαY, (5.64)

since the dimension is equal to 4. If∇gt = 0 then∇t = 0 and (5.64) leads to∇T = 0
which proves the lemma. �

Lemma 5.3 shows that(M, g) is locally isometric to the Riemannian productR×N3 of
a real line and a three-dimensional manifoldN3 (see, e.g. [26]). Using (5.59), we see that
T (t#, X⊥, Y⊥) = 0 for every vector fieldsX⊥, Y⊥ orthonormal to the vector fieldt# dual
to the torsion 1-formt . Hence, the torsionT and therefore the connection∇ descend toN3.

In particular,δt = 0 and therefore the QKT structure is strong. �
As a consequence of Theorem 5.2, we recover the following two results proved in [27] in
the setting of naturally reductive homogeneous 4-manifolds.

Theorem 5.4. A (locally) homogeneous four-dimensional QKT manifold is locally isomet-
ric to the Riemannian productR×N3 of a real line and a naturally reductive homogeneous
3-manifold N3.
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Theorem 5.5. Let (M, g) be a four-dimensional compact homogeneous QKT manifold.
Then the universal covering space M̃ ofM is isometric to the Riemannian productR×N3

of a real line and the three-dimensional space N3 is one of the following:

1. R3, S3,H3.
2. Isometric to one of the following Lie groups with a suitable left invariant metric:

2.1. SU(2);
2.2. SL(2̃,R), the universal covering of SL(2,R);
2.3. the Heisenberg group.

Theorem 5.5 is based on the classification of three-dimensional simply connected
naturally reductive homogeneous spaces given in [45].

5.1. Einstein-like QKT 4-manifolds

It is well known [1,7] that a 4n-dimensional (n > 1) QK manifold is Einstein and the
Ricci forms satisfyρα(X, JαY ) = ρβ(X, JβY ) = ργ (X, Jγ Y ) = λg(X, Y ), whereλ is a
constant. However, the assumptions that these properties hold on a QKT manifold(n > 1)
force the torsion to be zero [24] and the QKT manifold is a QK manifold. Actually, we have
already generalised this result proving that ifλ is not a constant the torsion has to be zero
(see the proof of Theorem 4.3).

If the dimension is equal to 4, the situation is different. In this section, we show that there
exists a four-dimensional (proper) QKT manifold satisfying similar curvature properties as
those mentioned above.

We denote byK the following(0,2) tensor:

K(X, Y ) := ρα(X, JαY )+ ρβ(X, JβY )+ ργ (X, Jγ Y ).

The tensorK is independent of the chosen local almost complex structures(Jα) because of
the following proposition.

Proposition 5.6. Let (M, g, (Jα),∇) be a four-dimensional QKT manifold. Then:

K = −Ric + ∇gt − 1
2(δt)g, (5.65)

Skew(Ric) = −1
4〈dt, Fα〉Fα − 1

2Jα(dt
′), α = 1,2,3, (5.66)

Ricg = Sym(Ric)+ 1
2(|t |2g − t ⊗ t), (5.67)

where 〈, 〉 is the scalar product of tensors induced by g, Skew (resp. Sym) denotes the
skew-symmetric (resp. symmetric) part of a tensor.

In particular, the Ricci tensor is symmetric if and only if the torsion 1-form is closed.

Proof. We use (3.41). From (3.42) and (5.63), we obtain

Dα(X, JαY ) = (∇Xt)Y − (∇JαY t)JαX, α = 1,2,3. (5.68)

To computeBα, we need the following general identity.
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Lemma 5.7. On a four-dimensional QKT manifold, we have
σ

XYZ
g(T (X, Y ), T (Z,U))

= 0.

Proof. Since
σ

XYZ
g(T (X, Y ), T (Z,U)) is a 4-form, it is sufficient to check the equality

for a basis of type{X, JαX, JβX, JγX}. The last claim is obvious because of (5.59).
For eachα ∈ {1,2,3}, Lemma 5.7, (5.63) and (5.64) yield

Bα(X, JαY )=
4∑
i=1

σ

XJαYei
(∇XT )(JαY, ei, Jαei)

= (∇Xt)Y + (∇JαY t)JαX − δtg(X, Y ). (5.69)

Substituting (5.68) and (5.69) into (3.41) and puttingn = 1, we derive (5.65) since∇gt =
∇t . Taking the trace in (5.64), we get

∑4
i=1(∇ei T )(ei, X, Y ) = 1

2

∑4
i=1dt (ei, Jαei)Fα(X, Y )

+ dt (JαX, JαY ), α = 1,2,3. Then (5.67) follows from the last equality and Remark 3.1.
Eq. (5.67) is a direct consequence of (3.37) and (5.59). �

A 4n-dimensional QKT manifold(M, g, (Jα),∇) is said to be aEinstein QKT manifold
if the symmetric part Sym(Ric) of the Ricci tensor of∇ is a scalar multiple of the metricg,
i.e. Sym(Ric) = (Scal/4n)g, where Scal= trg Ric is the scalar curvature of∇.

We note that the scalar curvature ‘Scal’ of a Einstein QKT manifold may not be a constant.
We shall say that a four-dimensional QKT manifold isSP(1)-Einstein if the symmet-

ric part Sym(K) of the tensorK is a scalar multiple of the metricg since the tensorK
is determined by the SP(1)-part of the curvature. On an SP(1)-Einstein QKT manifold
Sym(K) = 1

4(ScalK)g, where ScalK = trgK.

For a given QKT manifold with torsion 1-formt , we consider the corresponding
Weyl structure∇W, i.e. the unique torsion-free linear connection determined by the
condition

∇Wg = −t ⊗ g. (5.70)

Conversely, in dimension 4, to a given Weyl structure∇Wg = ψ ⊗ g, we associate the
QKT connection with torsionT = ∗(−ψ). Note that a given Weyl structure on a conformal
manifold(M, [g]) does not depend on the particularly chosen metricg ∈ [g], but depends
on the conformal class [g]. A Weyl structure is said to beEinstein–Weyl if the symmetric
part Sym(RicW) of its Ricci tensor is a scalar multiple of the metricg. Weyl structures
and especially Einstein–Weyl structures have been much studied. For a nice overview of
Einstein–Weyl geometry, see [13]. The next theorem shows the link between Einstein–Weyl
geometry and SP(1)-Einstein QKT manifolds in dimension 4.

Theorem 5.8. Let (M, g, (Jα),∇)be a four-dimensional QKT manifold with torsion 1-form
t . The following conditions are equivalent:

1. (M, g, (Jα),∇) is an SP(1)-Einstein QKT manifold.
2. The corresponding Weyl structure is a Einstein–Weyl structure.
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Proof. The Weyl connection∇W determined by (5.70) is given explicitly by

∇W
X Y = ∇gXY + 1

2t (X)Y + 1
2t (Y )X − 1

2g(X, Y )t
#.

The symmetric part of its Ricci tensor is equal to

Sym(RicW) = Ricg − Sym(∇gt)− 1
2(|t |2g − t ⊗ t)+ 1

2(δt)g. (5.71)

Keeping in mind that∇gt = ∇t , we get from (5.65), (5.67) and (5.71) that Sym(RicW) =
−Sym(K). The theorem follows from the last equality. �

It is well known [6,43] that if there exists a hypercomplex structure on a four-
dimensional conformal manifold then the conformal structure has anti-self-dual Weyl
tensor (see also [19]). Every four-dimensional hypercomplex manifold(M, g, (Hα)), i.e.
(an oriented anti-self-dual 4-manifold) carries a unique HKT structure in view of the results
in [17,19]. Indeed, letθ = θα = θβ = θγ be the common Lie form. The unique HKT
structure is defined by∇ = ∇g − 1

2 ∗ θ [19] (the uniqueness is a consequence of a gen-
eral result in [17], see also [20]). The HKT structure on a four-dimensional hypercomplex
manifold is SP(1)-Einstein since the tensorK vanishes. The corresponding Weyl structure
to the given HKT structure on a four-dimensional hyper Hermitian manifold is the Obata
connection [19], i.e. the unique torsion-free linear connection which preserves each of the
three hypercomplex structures. As a consequence of Theorem 5.8, we recover the result in
[39] which states that the Obata connection of a hypercomplex 4-manifold is Einstein–Weyl
and the symmetric part of its Ricci tensor is zero.

Theorem 5.8 and (5.65) show that every Einstein–Weyl structure determined by (5.70) on
a four-dimensional conformal manifold whose vector field dual to the 1-formt is Killing,
induces a Einstein and SP(1)-Einstein QKT structure.

Corollary 5.9. Let (M, [g],∇W) be a compact four-dimensional Einstein–Weyl manifold.
Then the corresponding QKT structure to the Gauduchon metric of ∇W is Einstein and
SP(1)-Einstein.

Proof. On a compact Einstein–Weyl manifold the vector field dual to the Lie form of the
Gauduchon metric is Killing by the result of Tod [44]. Then the claim follows from Theorem
5.8 and (5.65). �

The Ricci tensor of a four-dimensional QKT manifold is symmetric iff the torsion 1-form
is closed by Proposition 5.6. Applying Theorem 3 in [16] and using Theorem 5.8, we obtain
the following corollary.

Corollary 5.10. Let (M, g, (Jα),∇) be a four-dimensional compact SP(1)-Einstein QKT
manifold with symmetric Ricci tensor. Suppose that the torsion 1-form is not exact. Then the
torsion 1-form corresponding to the Gauduchon metric gG of (M, g, (Jα),∇) is parallel
with respect to the Levi-Civita connection of gG and the universal cover of (M, gG) is
isometric to R × S3. In particular, the quaternionic bundle (Jα) admits hypercomplex
structure.
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A lot is known about Einstein–Weyl manifolds (see a nice survey [13]). There are many
(compact) Einstein–Weyl 4-manifolds (e.g.S2⊗S2). Among them there are (anti)-self-dual
as well as non-(anti)-self-dual. We mention here the Einstein–Weyl examples of Bianchi IX
type metric [11,28–30]. All these Einstein–Weyl 4-manifolds admit SP(1)-Einstein QKT
structures by Theorem 5.8.

It is also known that there are obstructions to the existence of Einstein–Weyl structures
on compact 4-manifold [38]. If the manifoldM is finitely covered byT 2⊗S2 which cannot
be Einstein–Weyl thenM does not admit Einstein–Weyl structure and therefore there are
no SP(1)-Einstein structures onM.
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